df Avenger High Performance Graphics Engine
3 |
4.

3dfy

Avenger (a.k.a. Voodoo3)

SUPER HIGH PERFORMANCE
GRAPHICS ENGINE
FOR
3D GAME ACCELERATION

Revision 1.0
November 30, 1999
Copyright & 1996-1999 3Dfx Interactive, Inc. All Rights Reserved

3Dfx Interactive, Inc.
4435 Fortran Drive
San Jose, CA 95134
Phone: (408) 935-4400
Fax: (408) 935-4424

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 1 Updated 12/18/99



d f Avenger High Performance Graphics Engine
3 \ !
A

Copyright Notice:

[English translations from legalese in brackets]
©1996-1999, 3Dfx Interactive, Inc. All rights reserved

This document may bereproduced in written, electronic or any other form of expression only in its
entirety.

[If you want to give someone a copy, you are hereby bound to give him or her a complete copy.]
This document may not be reproduced in any manner whatsoever for profit.

[If you want to copy this document, you must not charge for the copies other than a modest amount
sufficient to cover the cost of the copy.]

No Warranty

THESE SPECIFICATIONS ARE PROVIDED BY 3DFX "ASIS' WITHOUT ANY
REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, FITNESSFOR A PARTICULAR PURPOSE,
NONINFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS, OR
ARISING FROM THE COURSE OF DEALING BETWEEN THE PARTIES OR USAGE OF
TRADE. IN NO EVENT SHALL 3DFX BE LIABLE FOR ANY DAMAGESWHATSOEVER
INCLUDING, WITHOUT LIMITATION, DIRECT OR INDIRECT DAMAGES, DAMAGES FOR
LOSS OF PROFITS, BUSINESSINTERRUPTION, OR LOSS OF INFORMATION) ARISING
OUT OF THE USE OF OR INABILITY TO USE THE SPECIFICATIONS, EVEN IF 3DFX HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

[You're getting it for free. We believe the information provided to be accurate. Beyond that, you're on your
own.]

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 2 Updated 12/18/99



d f Avenger High Performance Graphics Engine
A

COPYRIGHT NOTICE: ooeeiiii ittt ettt ettt e e e st e e e e e e s et b ba e e e e e e e s s saabbseeeaaeesannbraeeeeaeeaan 2
NOWARRANTY . 2
1. INTRODUGCTION. ..oeiiiiiiiicctieiee ettt e et e e e e e s et a e e e e e e e s ee bt rreeeaeeessassbreeeeeesssassbraeeeaasaas 12
1.1 RESOLUTIONS ... . 13
2. PERFORMANCE ...ttt ettt e e e e e ettt e e e e e e e s e eabb b e e e e e e e e s aabbraeeeaeeesannsrreeeas 14
2.1 2D PERFORMANC E ......ceetttttttiieeeeeeeeeeeeeeeeeeeeeteeeeeseseesesesssssssssssssssssssssssassssssssssssssssssssssssssssnsssnssnnnnnns 14
2.2 3D PERFORMANCE ......cettttittiiieeeeeeeeeeeeeeeeeeeeeteeeeeeessesessssssssssasssssssssssssssssssssssssasssssssssssssssssnsnsnssnnnnnns 14
3. FUNCTIONAL OVERVIEW ...ttt ettt ettt e e e e eatbaae e e e e e s nnnnbaaeeas 15
3.1 SYSTEM LEVEL DIAGRAMS.....ceiiiiiiiiieiieeeeeeeeteteeeeeeeeeeeeeeeeeeeseeesssassssasssasassssssssssssssssssssssssssssnsnssnnnnnns 15
3.2 ARCHITECTURAL OVERVIEW. ... uiiiiiee e e e ee et e et et e e e e e e e e e e s e e e e e s e e e e e e s e e s s e e e e e e e a e nnnan 16
321 OVEAI OVEIVIEW ....vveeeee ettt ettt e e e ettt e e e e e s e eabb b e e e e e e e e s eaasbbaeeeeesesasasbbreeesaeessanses 16
3.2.2 Detailed Datapath Diagram..........oouie et e e e sbe e e saee e sneeeaas 17
323 FBI/TIMIU ...ttt e ettt e e e e e s et a e e e e e e e e s bbb e e e e e e e e s sanabbaeeeeeeessannbbreeess 17
324 24 SRR OO PRRTRRRON 19
3.3 FUNCTIONAL OVERVIEW. ... .., 19
34 MODIFICATIONSFROM SSTL... .o 23
35 ADDITIONS TO AVENGER FROM BANSHEE ........iiiiiiiiiiiiiceecece e s 24
3.6 PROGRAMMING NOTESON AVENGER VS. BANSHEE .........cccoi i, 24
4, AVENGER ADDRESS SPACE.......coi oottt e e e eabbre e e e e e e eanrrreee s 26
5. VGA REGISTER SET ...ttt ettt e e e s et e e e e e e e st b a e e e e e e e s e nnnrrreeess 28
51 OVERVIEW OF THE AVENGER V GA CONTROLLER ...cccttiiiiiiiiiiieeieieeeeeeeeeeeseesessessesssesssssssssssssssssssssenes 28
52 UsSING VGA REGISTERSWHEN AVENGER ISNOT THEPRIMARY VGA ... 28
53 LOCKING VGA TIMING FOR VIRTUALIZED MODES .......ccoiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 28
54 SETTING VGA TIMING FOR VIDEO 2 PIXELSPER CLOCK MODE .....cccvviiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 28
55 GENERAL REGISTERS: ...ceeiiiiiiiiiiiitieieeeeeeeeeeeeteeeeeeeeeeeeeeeeeeaseseeeessassssssssssssssssssssssssssssssssssssssssssssssnnnns 32
551 INPUL SBIUS O (OX3C2)....eeieieeee ittt ettt ettt rb e e sab e be e st e e e nbe e e sbe e e sate e sabeeenbeeenees 32
55.2 INPUL SALUS 1 (OXBBA/OX3DA). ... ueeeetet ettt ettt ettt et e et sebe e be e s be e e sbe e e sbee e sabe e sabeesbeeenees 32
55.3 Feature Control Write (OX3BA/OX3DA) ...ccuueiiieieiiie it reeeiee ettt sbe e saee e snee e 32
554 Feature Control REAA (OXBCA) ....ciiueie ittt ettt ettt ettt see et sbe e s be e sbe e e saeeesnreaaas 32
555 Miscellaneous OULPUL (OXSCC)....ceeuuieiuieeiieeaiee ettt et et e bt e e sbe e ssbe e sbeesbe e e sbe e e saeeesnneeaas 33
55.6 Motherboard ENable (OX3C3) ......ciiiiiiiiieiiei ittt ettt sbe e e saee e sneeea 33
55.7 Adapter ENable (OXABES) ...........ooiiiiiiiiiie ettt 33
55.8 Subsystem ENable (OX102) ........ooiieiiiiieieieiie ettt naee s 33
5.6 CRTC REGISTERS: ...ccittiiiiiiiiiieeeeeteeeeeeeeeeeeeetaeeeeeeeesaseesasesssssessssassssssssssssssssssssssssssssssssssssssnssssssnnnnnns 34
5.6.1 CRTC Index Register (OX3BA/OX3DA) ......coeiuuieiuieaiieaeieeesiee et e st estee e sbee e saee e sate e sre e sbee e saeeas 35
5.6.2 Index OxO-Horizontal Total (OX3B5/0X3DD5) .....cciveeiieiiiieeriiie s riee s iee et 35
5.6.3 Index Ox1-Horizontal Display Enable End (OX3B5/0X3D5) ........ccicueriieienieieniieeniee e 35
5.6.4 Index Ox2-Start Horizontal Blanking (OX3B5/0X3D5)......ccciuiaiiiaiieeiieeeniee e 36
5.6.5 Index 0x3-End Horizontal Blanking (OX3B5/0X3D5) ........cciuiaiiiarieeiieeeniee e 36
5.6.6 Index Ox4-Start Horizontal Sync (OX3B5/0X3D5) .......ceeveiiriiieiiieiieeeiee et 36
5.6.7 Index Ox5-End Horizontal Sync (OX3B5/0X3D5).....cuveieieiariiieiiieerieeeiee et 36
5.6.8 Index Ox6-Vertical Total (OX3B5/0X3D5) .....cciuuieiieeiieieiee ettt e stee st e e e 37
5.6.9 Index OX7-OVerflow (OX3B5/0X3D5) .....cceiveieiureeiieeiieeeieeerieeeseieesbe e be e sbe e sbee e saee e sebeesbeeeees 37
5.6.10 Index Ox8-Preset Row Scan (OX3B5/0X3DD5) ....ccciuvieiuiieiieeeieeeniie et esiee st 37
56.11  Index 0x9-Maximum Scan Line (OX3B5/0X3D5) .........eciieiirieiariiieriee et e 38
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 3 Updated 12/18/99



d f Avenger High Performance Graphics Engine
A

5.6.12  Index OXA-Cursor Sart (OX3B5/0X3D5) .......ccuirrireiriiiiesre st 38
5.6.13  Index OxB-Cursor ENnd (OX3B5/0X3D5) .......ceiueiiuiireiiiieiiiesie e 38
5.6.14 Index OxC-Sart Address High (OX3B5/0X3D5)........cciuiriiiririeiiisie e 38
5.6.15 Index OxD-Start Address LOw (OX3B5/0X3D5)......ccuiiuririireiieiiesie e 38
5.6.16  Index OXE-Cursor Location High (OX3B5/0X3D5) ......ccocveiirieieriiieiiee e 39
5.6.17  Index OxXF-Cursor Location LOwW (OX3B5/0X3D5) ......eeeiveiiiieierieieiiee e 39
5.6.18 Index 0x10-\ertical Retrace Start (OX3B5/0X3DD5) .....ccvveienieieiiieiieeriee e 39
5.6.19 Index Ox11-Vertical Retrace End (OX3B5/0X3D5)........cviuiiriiiiiieiiesie e 39
5.6.20 Index Ox12-\krtical Display Enable End (OX3B5/0X3D5)......ccccuieiieeiieriieeeniee e 39
56.21  Index OX13-Offset (OX3B5/0X3D5).......ceiuirieirieeriieiiiesiie st 40
5.6.22 Index 0x14-Underline Location (OX3B5/0X3D5) ........ceiveiirieieriieniee e eiee e 40
5.6.23  Index Ox15-Start Vertical Blank (OX3B5/0X3D5) ......cccuvivirmirieiieiiesie s 40
5.6.24  Index 0x16-End Vertical Blank (OX3B5/0X3DD5).......cccuririrririeiieniesie s 40
5.6.25 Index 0x17-CRTC Mode Control (OX3B5/0X3DD5)........ccivirrirrerienresie e 41
5.6.26  Index 0x18-Line Compare (OX3B5/0X3D5)......ccciuuieiueerieraieeerieeesiieesreasieeesieeesaneesneesseeeeees 41
5.6.27  Index Ox1A-Horizontal Extension Register (OX3B5/0X3D5).......ceeiveeiierrnieieniiee e e siee e 41
5.6.28 Index Ox1B-\ertical Extension Register (OX3B5/0X3D5) ......cccuvrvirririiriesie e 41
5.6.29 Index 0x1C-PCIl Config/Extension Byte O (OX3B5/0X3D5) .......cccvvrvirrrrrerienie e 42
5.6.30 Index Ox1D-Extension Byte 1 (OX3B5/0X3D5)......cccceiurrrirririiiienie e 42
5.6.31 Index OX1E-Extension Byte 2 (OX3B5/0X3D5) ......cccuvrurrrirririeiiesie e 43
5.6.32  Index OX1F-Extension Byte 3 (OX3B5/0X3D5) ......cccueruirrirriiieiiesie e 43
5.6.33  Index 0x20-\ertical Counter pre-load LOW (OX3B5/0X3D5) ....cc.uieiveeiieeiieieniie e 43
5.6.34  Index 0x21- \ertical Counter pre-load High(OX3B5/0X3D5).......cccceeiierinieieniiee e 43
5.6.35 Index 0x22-Latch Read Back (OX3B5/0X3D5) ........cuerurrrirrerieiiesresie s s 43
5.6.36  Index 0x24-Attribute Controller Index/Data Sate (0X3B5/0X3D5).......ccccvevereeerueerieniieennen 43
5.6.37  Index 0x26-Display Bypass/Attribute Controller Index (0x3B5/0X3D5).......cccceerveerverriueennn 44
57  GRAPHICSCONTROLLER REGISTERS: .....vetiitiiiitrieiiriesrissresssree st sireesne s ne s sran e sine s sne s nreesnnee s 45
57.1 Graphics Controller Index Register (OX3CE) ......ccocueiiieieiiieiiee e 45
57.2 INAEX 0-SEt/RESEL (OX3CI) ...ttt 45
573 Index 1-Enable Set/RESEL (OXBCF) ......viiiiiieiieeriee st 45
574 Index 2-Color Compare (OX3CF) .....ccooueieieieiie ettt ettt sbe e saee e st e ebe e e 45
575 Index 3-Data ROtAIE (OXSCI) .....ociiiiiieieitie ettt ettt ettt sbe e e saee e st e sbeeeees 46
576 Index 4-Read Map SEIECt (OX3CF) ...c.uviiuiiiiiieeriee et 46
57.7 Index 5-GraphicS MOde (OX3CF) .....coiieieiiieeeie ettt st 46
5.7.8 INdex 6-MiSCEllaNEOUS (OXBC) ... .eiiiiieiiie ettt ebe e 47
5.7.9 Index 7-Color DON't Care (OX3CF) .....ueiiiiieiiee ittt sbe e e b e 47
5710  INAEX 8-MASK (OX3CIF)....eiteiiieeiiiesieesiie sttt 47
58  ATTRIBUTE REGISTERS......citiiiiiiieiiie ittt ettt sb e sar e sr e nr e nnae s 48
581 Attribute Index RegiSter (OX3C0) ... .ceiueiaieieriieeiieeeieeesieeesiee et et e e be e sbee e saee e ssbe e snbeeseeeeees 48
5.8.2 Index 0x0 through OxF-Palette Registers (OX3CO/3CL) ...coovvvieiieerieeiieeeiee et 48
5.8.3 Index 10-Attribute Mode Control Register (OX3C0) .....ocueieieieiiieriee et 48
584 Index 11-Over Scan Control Register (OX3C0) ......eeiverrrierarieieriieerieeeiee et 48
5.85 Index 12-Color Plane Enable Register (OX3C0).......cueiiieeirieeeiieerieeeieeesiee e 49
5.8.6 Index 13-Horizontal Pixel Panning Register (OX3C0) ......oovviiiiieiieeiieeeiee e 49
5.8.7 Index 14-Color Select Register (OX3C0) ....eieiuveeiieeiieeeiee ettt be e 49
59 SEQUENCER REGISTERS. .....cittttiiiiiiiiiietiis s e e s s testbe st e e st e eabb s e essses s b b st essses bbb seesseessbaanseesseessses 50
591 Sequencer INdeX REGISLEr (OX3CA) .....veiiteiaiii et eiee ettt ettt ettt e e e nbe e saee s 50
59.2 INAEX 0-RESEL (OX3BCD) ... .veeveeiteertee sttt sttt 50
5.9.3 Index 1-Clocking MOOE (OX3C5) ....uveeeveierieieiiieeiieesieeetee ettt et e et e e sbe e e saee e st e ebeeeees 50
594 INdEX 2-MaP MASK (OX3C5) ....veeveeieerieisieesiee sttt 50
5.95 Index 3-Character Map SEIECt (OX3C5) ..coveeeiureeiieeiiee ettt 51
5.9.6 INdEX 4-MeMOry MOOE (OX3C5) ... uveeiteieiteieiiieeeiee s tee et e et sebe e sbe e be e sbe e e sbee e saee e sabeeebeeenees 52
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 4 Updated 12/18/99



d f Avenger High Performance Graphics Engine
A

5.10  RAMDA C REGISTERS. ....cetttttttttttttttettteeeeeeeeeeeeeeeeeereeeeeseeeeeeeeressseessereseeeeresrererrerrer.—. 53
510.1 RAMDAC PixXel MaASK (OX3CEO) ...eeeiureeiureriierinieeaaiieesiieesteessieeesteeesiteesbeesbeessseeesaseesmressneesees 53
5.10.2 RAMDAC Read Index /Read SatuS (OX3CT7) ...eeerueierreriieeeieeeriie et esiee st s e 53

511 RAMDAC WRITE INDEX (OX3C8)....ueeitetiteteiuiieiiiesieeaaieeesteeesiteesabeesbeessbeeesbaeessbeesabeesbeeesseeesneeas 53
5111  RAMDAC DAta (OX3C)...cceteeesueeeiureeiuteaateeaaieeaaueeesuseesseessseessseeasssessasessseesssesssusessnsessasessnses 53

6. ACCESSING MEMORY INVESA MODES ...ttt 54

7. 24 RO PP PR 55

7.1 2D REGISTER APttt ettt ettt eeeeeeeeeeeee e e e eeeeeeeeeesesessssssssssssssssssssasssssssssssssssnsssnnsnnnnnns 55

7.2 REGISTER DESCRIPTIONS.......cciiiiieiee et e e e e e e e e e e e e e e e 57
721 S U Sl RS o T = PSSP 57
7.2.2 COMMAN REGISIE ...ttt ettt b e e ae e e st e sbe e e bee e sneeas 57
723 COMMANAEXET A REGISIEN .....ei ittt e e be e saee s 59
724 colorBack and COIOrFOre REQISIENS ......oueiiiiie ettt 59
7.25 PatEr N REJISIENS. ...ttt ettt et e bt e e sbe e e sabe e sabe e e be e e ebe e e aaeeennreaaa 60
7.2.6 srcBaseAddr and dstBaseAddr REGISIENS .......vei et 60
7.2.7 SICSZe aNd AStIZE REGISIENS ... ettt e sb e ae e s ees 61
7.2.8 SICXY @Nd ASEXY REGISLENS. ...ccteiitei ettt ettt ettt ettt sae et esb e e e sbe e e saee e smbeesnbeeeees 61
7.29 srcFormat and dStFOrmat REGISIES......coiuueiiiii ettt 62
7.210  clipOMin, clipOMax, cliplMin, and clipIMax ReQISErS .......cooueeiieeiiieiie e 64
7211 COIOrKEY REGISIEIS. ... eeeiiiitie ettt ettt ettt ettt b et e abe e st e e sbe e e sbee e saee e smbe e enbeeenees 65
A R o) o = o [ [ SRS 66
A I B 112 A [N = o = (= TSRS 66
7.224  lINESPPIE REGISIEN ...ttt e et b e e saee e sabe e sbeeeees 68
7.215  DresenhamMErTOr FEOISIENS ... uii ittt ettt ettt e et e s be e et e e e sbee e sate e snbe e sabeeenees 69

7.3 LAUNCH AREA ... .o 69
7.3.1 SCreen-tO-SCreeN BIt MOE ......vveiiiii ettt e e et e e e e eanees 69
7.3.2 Screen-to-screen SITELCh BIt MOGE. ........vvviiiiee et 70
7.3.3 HOSE-1O-SCrEEN Bl IMIOUE. .....eeeeii ettt e et e e e e e et r e e e e e e e s s ennrbreeeas 70
7.3.4 Host-t0-screen SIretCh Blt MOGE. .......ovveiiieeiieeee e 72
735 ReCtaNGI@ Fill IMOGE. ... ettt st sb e e saee e saeeea 72
7.3.6 LINEMOAE. ... .. ittt e e e et e e e e e e e et r e e e e e e e s e e abbbeeeeeeessannbbreeess 72
7.3.7 POIVIINE IMOE. ...ttt ettt sb e e e et e s be e e sbe e e saeeesnbeaaas 73
7.3.8 POlYGON Fill MOOE ...ttt ettt e sbe e e saee e sneeean 74

7.4 MISCELLANEOQUS 2D ... 82
741 Write SQram MOOE REGISIEN ... ..ottt sae e e ees 82
74.2 White Sgram Color REJISIEN .......coiiiiiiieiii ettt sae e e e b e e 83
743 WEite SOram Mask REGISIES ........ooiieiiiiieii ettt et e ees 83

8. 3D MEMORY MAPPED REGISTER SET ..oooiiiiiiiittiieeee ettt etnvree e e snaanes 83

8.1 STATUSIREGISTER. ...cetiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeteeesesesessessesassaeaesssssassssssssassssssasssssnsssssssssssssnsnsssnssnnnnnns 89

8.2 INTRCTRL REGISTER. ... ..o i i i, 89

8.3 VERTEX AND FVERTEX REGISTERS ... ..iiiiiiiiiii e i e tee e e e e e e e e e e s 20

8.4 STARTR, STARTG, STARTB, STARTA, FSTARTR, FSTARTG, FSTARTB, AND FSTARTA REGISTERS.......... 91

85 STARTZ AND FSTARTZ REGISTERS ....ccettttttttietteieeeeeeeeseeeeeeeeeeeeeessseesssssssssssssssssssssssssssssssssssssssssssssnnnns 91

8.6 STARTS, STARTT, FSTARTS, AND FSTARTT REGISTERS.....ccettttttiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeseesssssssseresesseeees 92

8.7 STARTW AND FSTARTW REGISTERS.....ccetttttittiiteeeeeeeseeeeeeeeeeeeeeeeeeesesssssssssssssssssssssssssssssssssssssssssssnnnes 92

8.8 DRDX, DGDX, DBDX, DADX, FDRDX, FDGDX, FDBDX, AND FDADX REGISTERS............ccceennnne... 92

8.9 DZDX AND FDZDX REGISTERS......ccci i i ee e e, 93

8.10 DSDX, DTDX, FDSDX, AND FDTDX REGISTERS......ccettttttteeeeeeeeeeeeeeeeeeseeeesessssesssssssessssssssssssmesssmmees 93

8.11 DWDX AND FDVWWDX REGISTERS ....eettttttetteeeeeeeeeeeseeeeseeeseeeesssssessssssssssssssssssssssssssssssssssssssssssmssssmmmee 93

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 5 Updated 12/18/99



df Avenger High Performance Graphics Engine
3 \J
_-:'-‘;i..

8.12 DRDY, bDGDY, DBDY, DADY, FDRDY, FDGDY, FDBDY, AND FDADY REGISTERS ......cccvvvvvvevreveenenns A9
8.13 DZDY AND FDZDY REGISTERS......cettttttttttteeeeeeeeeeeeeeeseeeseeeeeesseessssessssessssssessssessererreeerrmrer.. A9
8.14 DSDY, DTDY, FDSDY, AND FDTDY REGISTERS......cettttttteeeeeeeeeeeeeereeeeeseeeesessesessssssseessesssssssrresssmmees A9
8.15 DWDY AND FDVWWDY REGISTERS ....eettttttetteeeeeeeeeeeseeeesseeseeeeessssssssssssssessssssssssssssssssssssssmessssmmrssssmmee 95
8.16 TRIANGLECMD AND FTRIANGLECIMD REGISTERS .....cevttttitiiieeeeeeeeeeereeeeeeeeessseeseseeseessesesssssssesssmmees 95
8.17  NOPCMD REGISTER ....cettttttttteeeeeeseeeeeseeeeeeeseeseeseeesesesssssssssssssssssssssssssssssssessssessssssreeeermererrr. 96
8.18 FASTFILLCMD REGISTER ....cettttttttitteteeeeeeeeeseeeeeeeeseeeesseesesseseessessssssssssssssssssssssssssssssssssssssssssssssssnsnns 96
8.19 SWAPBUFFERCMD REGISTER ....ccetttiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeseeessessssssssssssssssssssssssssssssssssssssssssmssssmsmnn 97
8.20 FBZCOLORPATH REGISTER....cettttiiiiiiiteteteeteeteeeeeeeeeeeeeeeeeseeaeeeessesssesssesessssssesssssssssssssssssssssssssssssssnsnns 97
8.21  FOGIVIODE REGISTER......cettttttttttteeteeseeeeeeeeeesesseesesesssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 102
8.22  ALPHAM ODE REGISTER ...ccttttttttittietttttteeeeeeeeseeeseeeesseereseessesssesesessesssssssssssssssssssssssssssssssessssssssssssnns 104

8.22. 1 AIPNA TUNCHION. ...ttt ettt b e sbe e e sabe e st e e ebe e e sbee e saneesnbeans 105

8.22.2  AIPhA BIENAING ...ttt ettt b e nb e eaee e nareea 106
8.23  LFBMODE REGISTER ..ceetttttteteteeeeeeesseeeeeeeeessesseesesesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnns 107

8.23.1  Linear Frame BUfer WEITES.........vviiii ittt e e e e 109
8.24  FBZIMODE REGISTER ...eetttttteeeteeteeeeeeeeeeeeeesseesseesessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 112

8.24.1  Depth-DUFfering FUNCLION ........ocueiiiiie et 117
8.25  STIPPLE REGISTER....cetttttiiiiiietetteeteeeeeeeeeeeeeeeeeeeseeeessessesesssasssssssssssssssssssssssssssssssssssssssssssssssssssssnnnns 117
8.26  COLORD REGISTER ...cettttttteteeeeeeeeeeesseeseeseeeeeesseesesessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 117
8.27  COLORL REGISTER ...ctttttttttteteeeeeeeeeeeeseeessesesessessessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 118
8.28  FOGCOLOR REGISTER....ccettttttttetteteeeeeeeeseeeeeerseeseeeeeseeseseessesssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 118
8.29  ZACOLOR REGISTER....eettttttteeteeeeeeeeeeeeeeeeeeeeesseeseseesssesssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 118
8.30 CHROMAKEY REGISTER......cctttttiiiiitittteteeeeeeeeeeeeeeeesseereeeeseasaeeeeseesessssssssssssssssssssssssssssssssssssssssssssnns 118
8.31 CHROMARANGE REGISTER......ccetttitiiiiiiiteiteeeeteeseeeeeseereeeeeseseeeeeseesesseeeeesssesssesssssssessssssssssssssssssssnnns 119
8.32  USERINTRCMD REGISTER......ccttitiiiiiiiiiiieeeeeteeeeeeeeeeeeeeeessseseeseeeeesesessseessseessessssasssssssssssssssssssssssnnns 119
8.33  COLBUFFERADDR .....cetttttittetttttteeteeseeeeeseeeesesseeseseessessssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnns 120
8.34  COLBUFFERSTRIDE ....ccettttttttetteeeeeesseeeeseeeeesessessesesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnns 120
8.35  AUXBUFFERADDR......cettttttttetttteeeeteeeeeeeeeeeeeeesseesesesssessssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnns 120
8.36  AUXBUFFERSTRIDE ....cceettttteteteeeeeeessesseeseesesesseessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 121
8.37 CLIPLEFTRIGHT AND CLIPLOWYHIGHY REGISTERS......ccctttttiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeereeseesreseseereereee. 121
8.38  FOGTABLE REGISTER......ccettttttitiietteeeeeeeeeeeeeeseeeeeeeeeseesesesssasaesssssssssssssssssssssssssssssssssssssssssssssssssssnnns 122
8.39  FBIPIXELSIN REGISTERL......cetttttitiitiitittieeeeeeeeeeeeeeeeeeeseeseeeeeseseeesssssssssssssssssssssssssssssssssssssssssssssssssnnnns 122
8.40 FBICHROMARAIL REGISTER ...eevtitiiiiiiieiieeeeeeeseeeseeeeeeeeseeessssssessssssssssssssssssssssssssssssssssssssssssssssssssssnns 122
8.41  FBIZFUNCHRAIL REGISTER......cettttitttttttttteeeeeeeesteeseeeeseeeseseessesaeseesssssssssssesssssssssssssssssssssssssssssssssssssnns 123
8.42  FBIAFUNCHAIL REGISTER ...eetttitiiiiieteeeeeeeeeeeesseeseeeesseesesssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 123
8.43  FBIPIXELSOUT REGISTER......cctttttiiittitetteeeeeeeeteeeeeeeseeeeeeeeeseseeeeeseesessesssssssssssssssssssssssssssssssssssssssssnes 123
8.44 CLIPLEFTRIGHTL, CLIPTOPBOTTOML REGISTERS.....ccctttttteteeeeeeeeeeeeeeeeeeeeeeeseesssesssssssssssssssssssmssesees 123
8.45 SWAPBUFFERPEND REGISTER.....ccttttiiiiiiiiiiiiitieteeeeeeeeeeeeeeereseeeeeeeeeeeeeeeerereaeeeesresessrrerresrrrrsrssssrssssnn 124
8.46 LEFTOVERLAYBUF REGISTER.....cctttttiiiiiitieteteiteeeeeeeseeeeeeeeseeeeeeeeeeeeeaeseesesseseeesrarersrrrerserrrrssssrrmsmssnn 124
8.47 RIGHTOVERLAYBUF REGISTER ....ccttttiiiitiiitettiteeeeeetseeseeeeeeeeeeeeesesesssessessssesesessssessssssrsssrerssssrssssssee 124
8.48  FBISWAPHISTORY REGISTER .....cccvttttiiiteereeeeeeeeeeeeeesseeseseessesesesssesssssssssssssssssssssssssssssssssssssssssssssssnn 124
8.49  FBITRIANGLESOUT REGISTER......ccttttttttttteeteeeeeeeeeeeeseereeeeeeeseeeeeseessssessesssssssesssesessereeeerrrmmererrrre 125
8.50  SSETUPM ODE REGISTER....ccetttitiitteeteeteeeeeeeeeeseeeeeessseeseseessessssessesssssssssssssssssssssssssssssssssssssssssssssssnns 125
851 TRIANGLE SETUPVERTEX REGISTERS.....ccetttttttttutetreereseeeseseseeeseesessessssesssssssssssssssssssssssrmsssrrmmmresee 126
8.52  SARGB REGISTER ....cttttttitiiittitettteeeeeeeeeeeeeeesseeeeeeeseeerereeesesereeeseessssessssssereesessererrrrrerrerr.. 126
8.53  SRED REGISTER ...cettiiiiiiiiiiiiittietieteeeeteeeeeeeeeesseeseaaesssesesssssassssssssssssssssssssssssssssssssssssssssssssssssnssssnnnns 127
8.54  SGREEN REGISTER ....ceetiiiitiiiieieeeeteeseeeeeeeeeseesseeseeeesssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 127
8.55  SBLUE REGISTER.....ccitttitiiiiiietieeteeeeeeeeeeeeeeeeeeeeeeeeeeeseereeeessaeareeessssssssssssssssssssssssssssssssssssssssssssssssnnns 127
8.56  SALPHA REGISTER ...cetiiiiiiiiiietieeeeteeteeeeseeeeeseseeeeeseessessesessssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnns 127
B.57 SV Z REGISTER ....ceeitiiiiiiiiieieieteeeeeeeeeeeeeeeeeeeaesseeseaesssessssssssassssssssssssssssssssssssssssssssssssssssssssssssssnsnnnnns 127
8.58  SVWB REGISTER .....cetiiiiiiiiiiiiietieeieeeeeeeeeeeeeeeeeeseeseseessessesesssassssssssssssssssssssssssssssssssssssssssssssssssssssnnnnns 127
8.59  SWTMUO REGISTER ..eeetitiieieieeeeeieeeeeeeeeeeeeeseessessesessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 127
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 6 Updated 12/18/99



d f Avenger High Performance Graphics Engine
A

B.60  SS/WVO REGISTER....uteeiiieiiiiittreeeeeeetiaiittreeeeeesssaabraeeesaeessassbtseeeaasesaassbbaeeseasssaassbbaneesesssassbreneeaesean 128
B.61  ST/WWO REGISTER....uueeiiieeiiiiittteeeeeeetiaiittreeeeeeesiaisttaeeeeaeessasstrseeeaasssaassbbaeeseasssaassbbaeeesesssasssbrereeaasean 128
8.62  SWWTMUL REGISTER ..eeeetteiiieieeeeieeeeseeeeeeseesesesseesesessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 128
8.63  SS/WTMUL REGISTER ....cceiiitttiiite e et eeittteee e e e e e e etbbaee e e e e e s s ettt s eeeeeeessaaabbaeesaesssaassbbaeeeaeessasasbreneeaeeean 128
8.64  ST/WTMUL REGISTER......ciiccttteeite e e e ieittreee e e e e e eett et e e e e e s s et b e e e e e e e e s ssaabbaeeeeeeesaaasbbaeeeaeesaansbreeeeaasean 128
8.65 SDRAWTRICMD REGISTER ....ccctttittitiieieeeeeeeeeeeeeeeeseeereseeseesseeeeseessssssssssssesssessssssssresrerrrmmererrerrre 128
8.66 SBEGINTRICMD REGISTER.....cccttittiiiiitieittieeteeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeseeeeeseeesessesersererreerrrrererrrrrrreee 128
8.67 TEXTUREMODE REGISTER .....ccetttttttiiteeeeeeeeeeeeeeeeeeeesesseseessssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 130
8.68  TLOD REGISTER ....ccetttteeeeeeeeeeeeeeeeeseeeesseeseeesssesessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 133
8.6  TDETAIL REGISTER ..eettiteiiiieeieeeeeeeeeteeeeeseeeeeeeseesesessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 135
8.70 TEXBASEADDR, TEXBASEADDRI1, TEXBASEADDR2, AND TEXBASEADDR38 REGISTERS................ 136
.71  TREXINITL REGISTER ..eetttttttttttteeeteeeeeeeeeeeeseeeeeeseeeessessesessssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnns 136
8.72 NCCTABLEQO AND NCCTABLEL REGISTERS ....ccetvttttteeeeeeeeeeeeeeeeeeseesesseessssssssssssssssssssssssssssssssssssssssee 137
TS T =Tl N I =5 i 1 PP PPPRPPPPPPPPPPPRt 138
8.74  COMMAND DESCRIPTIONS. ....ceutttttttteteeereeeeeesreeseeeesseeseseessessssssssssssssssssssssssssssssssssrmsrserrrmermrrrr 139
8.74.1  NOP CONMIMIANG .......ccitiiiiiee e ettt e e ettt e e e e e e s eetb e e e e e e s setbrreeeaeeessaasbreeeeeeessasbbreeeeasennn 139
8.74.2 TRIANGLE COMMIANG....cciciiiiiiiiiiieie ettt e e e ettt e e e e e e st rre e e e e e e s s sabbreeeeeeessennbbreeeeaeenan 139
8.74.3  FASTFILL COMMANG.....cciiiiiiiiiiiiiieie e ettt e e e e e et bree e e e e e e st rr e e e e e e e s s eabbreeeeeesssennbraeeeeaeenan 140
8.74.4  SWAPBUFFER COMMANG........c..oviiiiieiiiiiiiiiiee ettt essetbrae e e e e e e e s eaabaee e e e e e s snnnbbaeeeeaeeean 140
8.745 USERINTERRUPT COMMANG ....uvviiiieiiiiiiiiiieeee e e e ccitteee e e e e e s seitrre e e e e e e s senarseeseeeessnnnrraeeeeaeeean 141
8.75 LINEARFRAMEBUFFER ACCESS (* FIX THIS ™) ittt 141
8.75.1  Linear frame bUffer WIITES ........ovveiiie et a e 141
8.75.2 Linear frame bUfer REAAS............eeviiiiiiiiiiieee et et 142
8.76  PROGRAMMING CAVEATS....ceettitiieieeeeeeeeeeeeeeeeeeeeeeeeeseeseseessssseessssssssssssssssssssssssssssssssssssssessssssssmssnnn 142
B.76. 1 IMEIMIONY ACCESSES. ... eteieeuteeaeaattetaaateeeaaaubeeaeaaseeeaeaabeeeesasbeeaeabeeeeeaabeeeesabbeeeeanbeeeesanbeeaeanrneans 143
8.76.2 Determining Avenger 1dle CoNAItioN...........ooeiiiiiiiiieiiee e 143
8.76.3  Triangle SUDPIXEl COrTECHION ......oiuei ettt e saee e saee e 143
9. L. PLL REGISTERS......ooii ettt ettt e e e e s ettt ba e e e e e e e s e eaabb e e e e seeesennnbbaeeeeeeessnnnses 144
9.1 PLLCTRLO, PLLCTRLL REGISTERS.......ccccieeeeeeeeeeee e 144
9.2 PLLCTRL2 REGISTER/CONTROLLING AGP/PCI CLOCKING IN AVENGER. ......uvvveieeeeeiiirrireeeeeeesiennns 145
10. 2. DAC REGISTERS. ...ttt e e e e e s e bbb e e e e e e e s e sabbreeeeeeeeeannnes 146
101 21 DACMODE ... . 146
10.2  2.2DACADDR. ... .o 146
10.3 2.8 DACDATA. ... 146
11. 3. VIDEO REGISTERS(PCI) ...ce ettt ittt ettt ettt ettt sbe e saae et e sbe s sneaeees 147
11.1.1  3.1.2 VidTVOULBIANKVCOUNL......ccceceiiiiiiieeee e e ettt e e e et e e e e e eeabbre e e e e e e s s enbbaeeeeaeesenanees 147
1112 312 VIAMAXRGDDEITA .......eeeiiiiiiee ettt ettt ettt 148
1113 3.1.3ViAProCCIG REGISIEN ...ttt ettt 148
1114 3.1.4 hwCUrPatAddr REQISIES ... eeiiieieiiie ettt 150
1115 3. 1.5 NWCUILOC REJISIEN ....ceeiieiiiieeiee ettt ettt ettt ettt rae e s sate e sabe e s be e e 151
1116 3.1.6 NWCUrCO REGISIEN ... .eieiieiiiee ettt ettt ettt ettt st e st e et sae e e sabe e sabeesbeeenees 151
1117 317 NWCUICL REGISIEN ...ttt ettt ettt ettt e st e et e e e sae e e sabe e sabe e enbeeeees 151
11.1.8  B.LBVIAINFOIMAL ...vveeiiiieiiciitiieee ettt e e e e e e eeab e e e e e e s e eabbreeeeeeessesbrseeeeaeesannees 151
1119 3.1.9vidSerialParallelPort REQISIEN .........coiviiiiieiiieeie e 153
11.1.10 3.1.10 VidTVOULBIANKHCOUNL.........ceeiiieiiiiiiieee ettt e e e e e e e arraeeeas 156
11111 3.1.11 vidinXDecimDeltas (for VMI downscaling Brensenham Engine)/
vidTvOutBlankHCount (for TV out Master MOAE) ........ccoceieiieerieeiieeeiee et 157
11.1.12 3.1 12 VIAINDECIMINITEITS. ...ttt e e e e e e e s arrreeeas 157
11.1.13 3.1.13 VidINYDECIMDEILAS.........cccuvveiiiee ettt e et e e e s e e e e e e s arrreeeas 157
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 7 Updated 12/18/99



d f Avenger High Performance Graphics Engine
A

11.1.14 3. 114 VIdPIXEIBUFTNOI ...ccciiiiii ittt 158
11.1.15 3.2.15 vidChromaKeyMin REGISLEN ........coiiuiiiiiieiie ettt 158
11.1.16 3.1.16 vidChromaKeyMaX REQISIEN ........coceiiiiiiiieiie ettt 159
11.1.17 3.1.17 vidInSatusSCUrrentLing REGISLEN .........ceiiiiieiiee et 159
11.1.18 Bl AB VIASCIEENSIZE. .....vvreeeee ettt ettt e e e e e et e e e e e e e s s bbb e e e e e e e e sensrreeess 159
11.1.19 3.1.19 VidOVEr |ayartCOON TS ....ceoveeeieieeiiee ettt ettt ettt ettt e b saee e saneens 159
11.1.20 3.1.20 vidOver [ayENdSCreenCOOr ... ...ccoueiiieeaiieeiieesieeeiee ettt sbe e saee e saee e 160
11.1.21 3121 VIAOVEN TQYDUAX.....ccveeeteeeiie ettt ettt ettt saee e sabe e s be e s sbee e saeeesabeens 160
11.1.22 3.1.22 vidOverlayDudXOffSEt I CWAALN.........cooiiiiie e 160
11.1.23 3.1.23 ViIAOVE TQYDVAY ... ettt ettt b e saee e saae e 160
11.1.24 3.1.24 vidOVEr |ayDVAYOFTSAL. .....ceieiie ettt b e saae e 160
11.1.25 3.1.25 ViADESKIOPSIAr tAAAY ...ttt ettt ettt saee e 161
11.1.26 3.1.26 vidDeSKIOPOVEN TaYSIFIAE.......ccieeeiieeeiee ettt 161
11.1.27 BL27 VIAINAAAIO ... e e e e e e e e e e e e s s bbb e e e e e e e e s e arrreeeas 162
11.1.28 I 2 Y Ko | 72V (o | PRSP 162
11.1.29 BL29VIAINAAAIZ ...t e e e et e e e e e s s bbb e e e e e e e e s nrrreeeas 162
11.1.30 I G (O R Ko |19 1 o [T PP PO 162
11.1.31 3.1.31 vidCUrrOVEr laySIartAAAr ........c.eee ettt 162
11.2 3.2 VIDEO-ININTERFACE .....ccc i, 163
121 B2 L FUNCHON......ttiieeeee ettt ettt e e e et e e e e e e e s eab b e e e e e e e e s seaabbaeeeeeeessssbbreeeeaeesansres 163
I B S T = 1 TSR 163
11.3 3B VIDEOLIMITATION .. .cciiieeeeee e, 164
12. COMMAND TRANSPORT PROTOCOL ..vvviiiiiiiiciiiieeee ettt snvreee e e e e ennnns 165
12.1  COMMAND TRANSPORT ....ccciieieeeeeeeeee e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaaaaaas 165
1211 CMDFIFO MANAGEIMENT ......cuiiiiieieiei ettt et e et e sbee e sate e sbe et e e e sbe e e saee e saeeesabeesnbeeenees 165
12.1.2  CMDFIFO DALA.....uuveiiieieiiiiiiiiiee e ettt e e e e se ettt e e e e e s s eeaabaeeeseeesssabbaeeesaeessasbbseeeseesssnnsses 166
12.1.3  CMDFIFO PaCKEt TYPE 0....coeeeeiieieiee ettt ettt ettt st et e et e saee e sateesabeesbeeeees 166
1214  CIMDFIFO PaCKEL TYPE L. ittt ettt ettt ettt et e et e sae e e smte e sabe e s beeeees 167
1215  CIMDFIFO PACKEL TYPE 2. ettt ettt ettt ettt ettt et e et e sae e e sate e sabeesbeeeees 167
12.1.6  CIMDFIFO PaCKEL TYPE 3. eieiiiee ettt ettt sttt ettt ettt e et e e saee e sabe e sabeesbeeeees 168
12.1.7  CIMDFIFO PACKEL TYPE A ...ttt ettt ettt ettt ettt et e s sbe e e sate e sabe e e beeeees 169
12.1.8 CIMDFIFO PaCKEL TYPE 5. ettt ettt ettt ettt ettt sae e e saae e sabe e sbeeeees 170
12.1.9  CIMDFIFO PACKEL TYPE B....cceeeiiiieeiee ettt ettt ettt e st e et e saee e saae e sabeesbeeeees 171
12.1.10 MISCEIIANEOUS ...ttt e e e e e e e e e e e e e e s e bbb aeeeeeeessennrraeeess 171
13. AGP/CMD TRANSFER/MISC REGISTERS.......oooiiiiiiiteeee ettt 171
T X = =0 74 =TT 172
13.2  AGPHOSTADDRESSLOW ... 172
13.3  AGPHOSTADDRESSHIGH......ccc i 173
13.4  AGPGRAPHICSADDRESS.......cccciieeeeeee e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaa e 173
13.5  AGPGRAPHICSSTRIDE........cccc e e e e e e e e e e e e e e e e e e e e e e e e e e e 173
13.6  AGPMOVECMD ... 173
14. COMMAND FIFO REGISTERS ..ottt e e e atbre e e e e ennes 174
14.1  CMDBASEADDROD ..o 175
14.2 CMDBASESIZED ... 175
14.3 CMDBUMPO ... 175
144 CMDRDPTRLO ... 175
145 CMDRDPTRHO ... 175
14.6  CMDAMIND.....cco 176
14.7  CMDAMAXO ... 176
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 8 Updated 12/18/99



df Avenger High Performance Graphics Engine
3 \J
_-:'-‘;i..

14.8  CMDSTATUSD ... .o 176
14.9  CMDHFODEPTHO .. ... 176
14.10 (021 1] 1 0 =V 0 177
14.11 (0r1Y ] 7N = AN 0 0] 1 177
14.12 (021 0] 7N = 4 =3 177
14.13 (021 0] =T = 1 177
14.14 (021 1] ] 1 177
14.15 L0210 ] 11 177
14.16 (021 10 AN, N 177
14.17 (021 T AN, o 178
14.18 (001 101 2 U1 178
14.19 L0y ] T ] I3 = = o o 178
14.20 (021 1] 1 0 = 1V 5 178
14.21 L0y T ] T =t 178
14.22 (021 1] 1 = 1 178
14.23 YUVBASEADDRESS.......cccoiiieeee e 178
14.24 YUVSTRIDE. .. ..o i i e 179
15. AGP/PCl CONFIGURATION REGISTER SET ...coiiiiiiitteeeee ettt 180
15.1 VENDOR _ID REGISTER ... .uuttitiiiiiiiiiitiiieetiae s s ssittaeee s e e e s s ssbbeeeaaasssssasbbaeeeaaeessnsnbbaeeeaaesssassbreeesaesnan 180
15.2  DEVICE D REGISTER.....icctttttttiei it iiittiteetta e s s sstttae e s e e e s s sasbbee e s e e s s s ssas b baeeeaaesssassbbaeeeaaeessansbreeaeaesnan 180
15.3  COMMAND REGISTER.....ccci i i, 181
15,4  STATUSREGISTER .....cceieeee e 181
155 REVISION D REGISTER.....utttttiiiiiiiiiiiiiitiae e s issitaeeesa s s s s ssbtee e s e e s s s ssasbbaeeeaeesssssssbaeeeaaesssassbreeesaeenan 181
15.6  CLASS CODE REGISTER.....uuttttttieeiiiiittiteettasesisssstseessasssssssstsseesasssssssssseessssssssssssssessessssnsssseeesessnn 182
15.7 CACHE _LINE_SIZE REGISTER ...ciiiiiiiittittitiae e s ssttttees e e e s s sssbtaeea e e s s s ssasbbaeeeaaesssnssbbaeeeaaeessassbrneaeaesnan 182
15.8 LATENCY_TIMER REGISTER ...tttiiiiiiiiitiitetiae s s istttseesaeesssasttaeesaassssssstbaeesaaesssnsssbaeeeaassssnssssnensansnan 182
15.9  HEADER _TYPE REGISTER ...utttttiiiiiiiiititeetiasssissttsnessassssssssssseesaesssssssssssessesssssssssssesssssssnsssssessensnn 182
15.10 Lo B I R =TT 1 = = 182
15.11 MEMBASEADDRO REGISTER .....uuuuuuuuuutuuuunuununnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 182
15.12 MEMBASEADDRL REGISTER .....uuuuuuuuuuuuuunnnunnnnnnnnsnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnn 183
15.13 IOBASEADDR REGISTER .....uuuuuuuuuiiuiuiiununnnnanannannnnannasnnnnnnnnnnnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 183
15.14 SUBVENDORID REGISTER ...uiiiiiiiiiii e e et e e 183
15.15 SUBSYSTEMID REGISTER. .. .iiiiiiiiee i ettt ettt s nan 183
15.16 ROMBASEADDR REGISTER......uuuuuuuuuiiiiiiiiniieannannnaannnnannanaannanannnnnn.a.nn_..__——nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 184
15.17 (@7 = = I =S @ T N = 184
15.18 INTERRUPT _LINE REGISTER ...ciiiiiiiiutitiiitie s s s iiititeee e e s s sssstbeeesaesssssstbaeesaasssnssbsaeesaesssssnssneesanennn 184
15.19 INTERRUPT _PIN REGISTER ..11etiiiiiiiitttiitettessssitttteesaessssssstseeesasssssssssseeesaessssssssnsesssssssssssssenssnenn 184
1520  MIN_GNT REGISTER......uuttiitiiiiiiiiitittettae s s sstbaeee s e e e s s s bbee e e e e e s s s bbb e eeeaaeessaansbaeeeaaeessassbreeeeaesnan 184
15.21 MAX _LAT REGISTER. ..cttti it iitttittt i e e e s s sttt e e e e s s sttt e s e e e s sttt e e e e e e s s s b b e e e e e e e e s saabbaneeeaeessnnnrrreeeas 185
15.22 N D TS 1 = = T 185
15.23 (07 €S VN WU =€ £ = 185
15.24 CFGSCRATCH REGISTER ... iiiiie i i it et e e ettt e e e e e e e e e e e e e e e e e e e e nnnan 185
1525  NEW CAPABILITIES (AGP AND ACPI) ... ittt ettt ettt sbee e saee s 185
15.26 CAPABILITY IDENTIFIER REGISTER ... ..iiiiiiiiiie e e e e ee et e e 185
T5.27  AGP STATUS cettttiiiie e i i ittt e e e ettt e e e e e e s e bbb e e e e e e e s e bt aaeeeeeessassabbaeeeaeeesaasstbaeesaaesssastbreeeeaasaan 185
15.28 AAGGP COMMAND ....cetetteeeeeeeeeeeeeeeeeeeeeeeseseeesasesesesassssssssssassssssssssssssssssssssssssssssssssssssssssssssssnsnnnnnnns 186
T15.29  ACPI CAPID oottt e et e e e e e e s e bbb e e e e e e e e s seaabbaeeeaeeeesnnbbrereeaaenan 187
15.30  ACPI CTRL/STATUS . ... tttiiiiie e e e ittt e e e e et et ae e e e e e e s s sebbaeeeeeaessaassbbaeeaaaeesaassbaeesaaesssasstbrereeaasean 187
16. INIT REGISTERS.....co oottt e e e s et e e e e e e s s eaabbae e e e e e e s senarbreeeas 188
16.1  STATUSREGISTER (0X0)....eeiuteiitetititeitit ettt e st e steeeste e stee e stee e sabe e sbe e s be e e sbee e sateesabeesmbeesbeeenbaeeanneas 188
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 9 Updated 12/18/99



d f Avenger High Performance Graphics Engine
A

16.2  PCIINITO REGISTER (0X4) ... .eeiiuieiitit ettt ettt ettt ettt ettt e ettt e be e e sbe e e saee e sabe e smbeasbeeesbeeeenneas 189
16.3  SIPMONITOR REGISTER (OX8) ....vetiteieitiieiuieeiieesieeesteeestee e stte e st e s beesbe e s saee e sateesnbeesmbeesbeaeaseeesnneas 189
16.4 LFBMEMORYCONFIG REGISTER (OXC) ..eiiiuiiiiuiieiiieetieesiee e sttt e st e sbeesbe e sbee e saee e smteesbeasbeeesbeeesneeas 190
16.5 MISCINITO REGISTER (OX10) .uuveietiieitieeiiieesteesteeartee e stee e stteesate e sbe e be e e sbe e e saeeesabeesmbeasbeeeabaeesnneas 191
16.6  MISCINITL REGISTER (OX14) ....utiiitiieitit ettt riee e tee et e et sate ettt e be e e sbe e e saee e sabe e smbeasbeeesbaeesnneas 192
16.7 DRAMINITO REGISTER (OX18).....ciiiteiiieieiiiieiiiesiie et ettt et et e te e sbe e saee e sabe e smbeaebe e e sbeeesnneas 194
16.8 DRAMINITL REGISTER (OXLC) ...eeiiiiiiiiieiiiieriee s tee ettt ettt ettt e bt e sae e saee e sabe e smbe e sbe e e sbaeesnneas 195
16.9 AGPINITO REGISTER (0X20) .. cciuteietetaiueeeatieesieaateeasteeesueeesteeesaseesbeassbeessseeesaseesasessnsessseesssenesnnens 195
16.10  TMUGBEINIT REGISTER (OX24) .....coiteieiuieeiieeateeetee sttt ettt et e be e sbee e sate e sabe e sabeesbeeenbeeesnneas 196
16.11  VGAINITO REGISTER (OX28) ...cciteiiitiieiiiieiiiaiieeesteeestee e sttt e ste e bt e bt e e sae e saee e sabe s smbeesbeeesbaeesnneas 196
16.12  VGAINITL REGISTER (OX2C) ..eeiiuteiaitiieiuieeiieasteeastee e stee e stte e sate e sbeesbe e e sbee e saee e sabeesnbeasbeeenbaeesnneas 198
16.13 2D _COMMAND_REGISTER (0X30) ....eeiiurieiurieiiieeteeerteeesieeesieesbeessteeesaeeesaseesabeesbeasseeesseeesneeas 199
16.14  2D_SRCBASEADDR REGISTER (0X34) .. .eiiiiiiitiiatieesiie e sttt e tee st sie et sate et e st e e saee e snne s 199
17. FRAME BUFFER ACCESS. ..ottt ettt e e e s etttae e e s e e e s snanbbaeeeeaeesenanees 199
17.1 FRAME BUFFER ORGANIZATION .....cccciieeeeeeeee e e e e e e e e e e e e e e e e 199
17.2  LINEARFRAMEBUFFERACCESS .....ccc i i i, 199
17.3  TILED FRAMEBUFFER ACCESS .....cc i i, 200
18. YUV PLANAR ACCESS. ... oottt ettt e e e e e s ettt e e e e e e e e s eaabraeeeeeeean 201
19. TEXTURE MEMORY ACCESS ... oottt ettt et e e saabaae e e e e 203
19.1  WRITINGTOTEXTURE SPACE ..o i it e e e e e e e e e e e e e e e e e e 203
19.2 CALCULATING TEXEL ADDRESSES......ccciteeieeeeeeeee e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaa e 205
19.3 MAINTAINING READ-REORDERING COHERENCY IN AVENGER .....coiiiiiiniiiniis i 206
20. ACCESSING THE ROM ...ttt ettt e ettt re e e e e e e e st bae e e e e e e s snanrbaeeess 206
20.1 ROM CONFIGURATION....cettttetrereesersessssssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssne 206
20.2  ROM READS ... .o cttttiiie e et eeitte et e e et e ettt e e e e e s s ssbba et e e eeessasbbbseeeaaeessaabbaeeeaesesaassbbaeeeaeeesanarbrereeaanaan 206
20.3  ROM WRITES ...cetttttititietetteteteeeeeeeeeeeeeeeeeeeeeseeeseeeessesssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 206
21. POWER ON STRAPPING PINS ...ttt era e e e e s e sanbbre e e e e e e e eeannes 207
22. MONITOR SENSE ..ottt e e e e ettt e e e e e e e s e eab b e e e e s eeeseeasbbaeeeeeeessnnnres 207
23. HARDWARE INITIALIZATION ..ottt ettt e e ettrae e e e e e e s esaabbre e e e e e e e enannes 207
24, DATA FORM AT S ...ttt ettt e e e e et e e e e e e e s ee bbb e e e e e eeesasstbaeeeseessaassbbreeeeaeesaasres 208
25. TEST REQUIREMENTS.....o ottt ettt ettt e e e nnte e e s st e e e s snraeeeanns 208
26. ISSUES/REQUIREMENTS ...ttt ettt ee e e nnre e e e enree s 208
26.1  PCl/A GP REQUIREMENTS ...tttttsttsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 208
26.2 2D REQUIREMENTS (SST=() ..eiitutieiuteaitiaiiteeasieeestteesiteesbeeasbee e saee e saeeesabeasmbeeanbeeaabeeesnneesnbeesnseeanees 208
26.3  VIDEO/ MONITOR REQUIREMENTS. ...eutttsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 209
26.4 VGA CONTROLLER REQUIREMENTS ...iittttuuiiieiiiirtttiiiieessiesssssssessseessssnssesssessssssseesssessssnnneeeanes 209
26.5 MEMORY CONTROLLER REQUIREMENTS . uuuuuuiieiiiettttiiieessiessssssieesssesssssnsesssssssssnseesssessssnnneeesne 210
26.6 CONFIGURATION EEEPROM .....cctiiiiiiiiiiiiiieeieeeeeeeeeeeeeeseesessessssssssssssssssssssssssasssssssssssssssssssssssssssssssnnnns 210
26.7  DAC REQUIREMENTS .utuuuiiiiiiietttiieeesttestssasessstesssaseesstessssstesstesstssnteesseestssteesssesstsinnieeesses 210
26.8  PLL REQUIREMENTS Lutuuuiiiiiiittttiieiesiisstssaiseesstesssssssesstesssssssteesseestssneesseessssnteesssessssnnieeesnes 210
26.9  OVERALL REQUIREMENTS. . .iittttttiiiieiiitttssniieesttessssiteesssesssssseesssesssssnsteesseessssaeesssesssinnneeesne 210
26.10 PCO7 REQUIREMENTS. . .iittttttiieieeiiestststeesstesssasteesssees bbb teesseessbba s sessseesbbaaseesseensbbsasaeasies 210
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 10 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

26.11 TESTABILITY REQUIREMENTS. ..uttuuuiiiiiiiietttisisesssesstssssseesseestsssseesssssssssnsseesseessseesssesss 211
27. REVISION HISTORY oottt ettt ettt e e e et e e e e e e e s s eaabba e e e e e e e s enanbbaaeeeeeessnnnnes 211
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 11 Updated 12/18/99



3d

1. Int

f Avenger High Performance Graphics Engine
\ )
A

roduction

Avenger
architect

Graphics Engine is a second generation 3D graphics engine based on the original SST1
ure. Avenger incorporates all of the original SST1 features such as true-perspective texture

mapping with advanced mipmapping and lighting, texture anti-aliasing, sub-pixel correction, gouraud

shading,
which &

depth-buffering, alpha blending and dithering. Avenger also has 2 full-featured texturing units,
low for advanced features like trilinear filtering, dual-texturing or bump mapping to be performed

at the rate of a pixel per clock. In addition to the SST1 features, Avenger includes aVGA core, 2D

graphics

Features

Video-In:

Video-O

acceleration, and support for Intel’s AGP bus.

SST1 baseline features with 2 texturing units.
SST1 software compatible

AGP2X / PCI bus compliant

Native VGA core

2D acceleration

Binary/Ternary operand raster ops

Screen to Screen, Screen to Texture space, and Texture space to Screen Blits.
Color space conversion YUV to RGB.

1:N monochrome expansion

Rendering support of 2048x2048

Integrated DAC and PLLs.

Bilinear video scaling

Video in viafeature connector

Supports SGRAM/SDRAM memories

TV out interface runs at 100MHz DDR

operates simultaneously with TVout interface.
decimation

support for interlaced video data

support VMI, SAA7110 video connectors

triple buffers for video-in data

ut:

Bilinear scaling zoom-in (from 1 to 10x magnification in increments of 0.25x)
decimation for zoom-out (0.25x, 0.5x, 0.75x)
chroma-keying for video underlying and overlaying
support for stereoscopic display

hardware cursor

double buffer frame buffers for video refresh

DDC support for monitor communication

DPMS mode support

overlay windows (for 3D and motion video)

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 12 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

1.1 Resolutions

VGA

MODE # [Mode Type # of Colors Native Resolution |Alpha Format
0,1 Alpha 16/256K 320x200 40x25

0,1 Alpha 16/256K 320x350 40x25

0,1 Alpha 16/256K 360x400 40x25

2,3 Alpha 16/256K 640x200 80x25

2,3 Alpha 16/256K 720x400 80x25

2,3 Alpha 16/256K 320x200 80x25

4,5 Graphics 4/256K 640x200 40x25

6 Graphics 2/256K 120x350 80x25

7 Alpha mono 320x200 80x25

D Graphics 16/256K 640x350 40x25

E Graphics 16/256K 640x350 40x25

F Graphics mono 640x350 80x25

10 Graphics 16/256K 640x350 80x25

11 Graphics 2/256K 640x480 80x30

12 Graphics 16/256K 640x480 80x30

13 Graphics 256/256K 320x200 40x25

VESA

MODE # [Mode Type # of Colors Native Resolution |Alpha Format
100 Graphics 256/256K 640x400 80x25

101 Graphics 256/256K 640x480 80x30
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 13 Updated 12/18/99



df Avenger High Performance Graphics Engine
3 )
4.

2. Performance

2.1 2D Performance
Estimated triangle performance.

8-bits per pixel, 1024x768 resolution (linear)

10-pixel 2D lines 4M lines/sec
100-pixel 2D lines 400K lines/sec
500-pixel 2D lines 80K lines/sec

10 x 10 filled rectangle 2-4M rectangles/sec
100 x 100 filled rectangle 170K rectangles/sec
500 x 500 filled rectangle 11.5K rectangles/sec
host blit to screen 10 x 10 40M bytes/sec

host blit to screen 100 x 100 50M bytes/sec
screen to screen blit 500 x 500 350M bytes/sec

2.2 3D Performance
16-bits per pixel, 640x480

1 pixel gouraud, Z, unlit 1.8M tris/sec

5 pixel gouraud, Z, unlit 1.8M tris/sec

50 pixel gouraud, Z, unlit 1.4M tris/sec

1000 pixel gouraud, Z, unlit 70k tris/sec

50 pixel Z, blinear textured 1.0M tris/sec

50 pixel Z, trilinear mip-mapped 375K tris/sec

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 14 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

3. Functional Overview

3.1 System Level Diagrams

In its entry configuration, an Avenger graphics solution consists of asingle ASIC + RAM. Avenger isa
PCI Slave device, that receives commands from the CPU via direct writes or through memory backed fifo
writes. Avenger includes an entire VGA core, 2D graphic pipeline, 3D graphics engine, texture raster
engine, and video display processor. Avenger supports all VGA modes plus a number of VESA modes.

PCl System Bus
F
4 Bt | 418116 Mbytes of SGRAM or
Memory 16Mbytes of SDRAM
4
A
H4
.| Graphics Chip
A
Feature Connector
Monitor
v
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 15 Updated 12/18/99



df Avenger High Performance Graphics Engine
3 )
4.

3.2 Architectural Overview

3.2.1 Overall Overview
The diagram below illustrates the overall architecture of the Avenger graphics subsystem.

| PCI/AGP Interface I |

[ v
CMD Fifos
)

Feature VIDEO VGA 2D FBI TMU
Connector IN PLL

Memory Controller — VIDEO 4>I>

SGRAM PLL
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 16 Updated 12/18/99



d ! Avenger High Performance Graphics Engine

3.2.2 Detailed Datapath Diagram

H3 Data Path

PCI
Output Flops
FBI Input
Pl Bus
PCI
Input Flops
PCI/AGP Register
Core Bank
AGP
Write Buffer
PCl Iterators
FIFO Async
AGP
Read Buffer
Subsystem .
Dispatch W Reciprocal
AGP
Req Buffer
Video VGA SIW, TIW
Core
Memory FBI
FIFO Ctrl SGRAM In
Video Sgram VGA Sgram LOD
In In
Memory FBI
FIFO Buffer SGRAM Out
VGA Sgram FIFO
Out
Memory FIFO
Buffer Unpack
Texture
Address Gen
Triangle Setup |
Read Re-order TMU Sgram In
Subsystem |
Dispatch
Data
Alignment
2D Float-to-Fixed
Input Bus Conversion
I [ YIQ-to-RGB
Color Command
Expansion Dispatch
| T RGB Bilinear
I Blend
SRC FBI
Chroma Register FIFO
| | FIFO FIFO
4{ ROP | | Graphics H Trex-to-FBI | [
Core
| | Texture
Combine
DST cli Pixel |
Chroma P FIFO
2D SGRAM 2D SGRAM Graphics FBI
In Out Backend Core SGRAM IN
FBI
SGRAM Out
Video Sgram Vldeo' SEream Video Scale Color Sp‘_eu:e Hardware DAC
In Fifo's Segment Conversion Cursor
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 17 Updated 12/18/99



d f Avenger High Performance Graphics Engine
A

FBI Linear

Frame
Buffer  Iterator
Access ARGB

Texture

Colorl CT or0

—

—3

Chroma Color Combine

Kev i

Foa
Srci Dst |
|
S AlphaBlend ||
Texture | | | |
Memory i v v |
| Nt Z.A Dither | Frame
: Texture Combine | Compare ¢ : Buffer
% :
| P RGBMask, |
o P> Applv Visibility |
| |
|
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary

18 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

324 2D
LFB LFB’
Host Port
8x8x24
_» .
Cl Palette Endian
Endian o LEB’
l LFB
1A A
— SRC [
| Chroma| ,f ROP 1
— 4N
256
- CLUT
— 8N : _ DST e Endian
Replicate| | Chroma CLIP
Bytes -
T
- 1:N DST ADR Write
i FIFO [ | FIFO Buffer
1A
C1 Co T
SRC DST
L_| src ADR ADR
FIFO l l
To Memory Ctrl

3.3 Functional Overview

Bus Support: Avenger implements both the PCI bus specification 2.1 and AGP specification 1.0 protocols.
Avenger isadave only device on PCI, and a master device on AGP. Avenger supports zero-wait-state
transactions and burst transfers.

PCI Bus Write Posting: Avenger uses an synchronous FIFO 32ntries deep which allows sufficient write
posting capabilities for high performance. The FIFO is asynchronous to the graphics engine, thus
allowing the memory interface to operate at maximum frequency regardless of the frequency of the PCI
bus. Zero-wait-state writes are supported for maximum bus bandwidth.

VGA: Avenger includes a 100% IBM PS/2 model 70 compatible VGA core, which is highly optimized for
128 bit memory transfers. The VGA core supports PC * 97 requirements for multiple adapter, and vga
disable.

Memory FIFO: Avenger can optionally use off-screen frame buffer memory or AGP memory to increase
the effective depth of the PCI bus FIFO. The depth of this memory FIFO is programmable, and when
used as an addition to the regular 32 entry host FIFO, allows up to 1M byte host writes to be queued

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 19 Updated 12/18/99




d f Avenger High Performance Graphics Engine
3 \ !
A

without stalling the PCI interface. Avenger supports 2 independent command streams that are
asynchronous to each other. Either command stream can be located in AGP memory or frame buffer
memory.

Memory Architecture: The frame buffer controller of Avenger has a 128-bit wide Datapath to RGB,
alpha/depth-buffer, 2D desktop, video, and texture memory with support for up to 100 MHz SGRAMs or
SDRAMS. For 2D fills using the standard 2D hitBLT engine, 8 16-bit pixels are written per clock,
resulting in a 800 Mpixel/sec peak fill rate. For screen clears using the color expansion capabilities
specific to SGRAM, 64 bytes are written per clock, resulting in a 6.4 Gbytes/sec peak fill rate. For
Gouraud-shaded or textured-mapped polygons with depth buffering enabled, one pixel is written per clock
—thisresultsin a 75 Mpixels/sec peak fill rate. The minimum amount of memory supported by Avenger is
4 Mbytes, with a maximum of 16 Mbytes supported.

Storing texture bitmaps, the texture memory controller of Avenger must share the 128-bit wide Datapath
to Avenger memory. The texture unit uses sophisticated caching to reduce the required bandwidth of
memory to perform bilinear texture filtering with no performance penalty. The amount of texture memory
isonly limited by the maximum amount of Avenger frame buffer memory.

Host Bus Addressing Schemes: Avenger occupies a combined 64 Mbytes of memory mapped address
space, using two PCI memory base address pointers. Avenger also occupies 256 bytes of 1/0 mapped
address space for video and initialization registers. The register space of Avenger occupies 6 Mbytes of
address space, the linear frame buffer occupies 32 Mbytes of address space, the ordered texture download
port occupies 2 Mbytes of address space, and the 3D pipeline linear frame buffer takes 8 Mbytes of address
space.

2D Architecture: Avenger implements a full featured 128-bit 2D windows accel erator capable of
displaying 8, 16, 24, and 32 bits-per-pixel screen formats. Avenger supports 1, 8, 16, 24, and 32 bits-per-
pixel RGB source pixel maps for BitBlts. 4:2:2 and 4:1:1 YUV colorspace are supported as source
bitmaps for host to screen BitBIts. Avenger supports screen-to-screen and host-to-screen stretch BitBlts at
100 Mpixels/Sec. Avenger supports source and destination colorkeying, multiple clip windows, and full
support of ternary ROP's. Patterned Bresenham line drawing with full rop support, along with polygon
fills are supported in Avenger’s 2D core. Fast solid fills, pattern fills, and transparent monochrome
bitmap BitBltsin 8 bits-per-pixel, 16 bits-per-pixel, and 32 bits-per-pixel modes.

Linear Frame Buffer and Texture Access: Avenger supports linear frame buffer, texture download access,
and 3D pipeline frame buffer access for software ease and regular porting. Multiple color formats are
supported for linear frame buffer write. Any pixel may be written to the 3D pixel pipeline for fogging,
lighting, apha blending, dithering, etc. Texture maps can be downloaded into common Avenger memory
either through standard linear frame buffer space, 3D pixel pipeline frame buffer access, or down through
the ordered texture memory access address space.

Triangle-based Rendering: Avenger supports an triangle drawing primitive and supports full floating
point hardware triangle setup. Triangle primitives may be passed from the CPU to Avenger as
independent triangles, as part of atriangle strip, or as part of atriangle fan. Only the parameter vertex
information is required by the host CPU, as Avenger automatically cal culates the parameter slope and
gradient information required for proper triangle iteration.

Additional drawing primitives such as spans and lines are rendered as special case triangles. Complex
primitives such as quadrilaterals must be decomposed into triangles before they can be rendered by
Avenger.

Gouraud-shaded Rendering: Avenger supports Gouraud shading by providing RGBA iterators with
rounding and clamping. The host provides starting RGBA and DRGBA information, and Avenger
automatically iterates RGBA values across the defined span or trapezoid.

Texture-mapped Rendering: Avenger supports full-speed texture mapping for triangles. The host provides
starting texture S/'W, T/W, /W information, and Avengerautomatically calculates their slopes D(S/'W),

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 20 Updated 12/18/99




df ; Avenger High Performance Graphics Engine
3 )
A

D(T/W), and D(1/W) required for triangle iteration. Avenger automatically performs proper iteration and
perspective correction necessary for true-perspective texture mapping. During each iteration of triangle
walking, adivision is performed by 1/W to correct for perspective distortion. Texture image dimensions
must be powers of 2 and less than or equal to 256. Rectilinear and square texture bitmpas are supported.

Texture-mapped Rendering with Lighting: Texture-mapped rendering can be combined with Gouraud
shading to introduce lighting effects during the texture mapping process. The host provides the starting
Gouraud shading RGBA as well as the starting texture W, T/W, 1/W, and Avenger automatically
calculates their slopes DRGBA, D(S/W), D(T/W) required for triangle iteration. Avenger automatically
performs the proper iteration and calculations required to implement the lighting models and texture
lookups. A texel iseither modulated (multiplied by), added, or blended to the Gouraud shaded color. The
selection of color modulation or addition is programmable.

Texture Mapping Anti-aliasing: Avenger alows for anti-aliasing of texture-mapped rendering with support
for texture filtering and mipmapping. Avenger supports point-sampled, bilinear, and trilinear texture
filters. While point-sampled and bilinear are single pass operations, Avenger supports trilinear texture
filtering as a two-pass operation.

In addition to supporting texture filtering, Avenger also supports texture mipmapping. Avenger
automatically determines the mipmap level based on the mipmap equation, and selects the proper texture
image to be accessed. Additionally, the calculated mipmap LOD may be biased and/or clamped to allow
software control over the sharpness or “fuzziness’ of the rendered image. When performing point-
sampled or bilinear filtered texture mapping, dithering of the mipmap levels can also optionally be used to
remove mipmap “banding” during rendering. Using dithered mipmapping with bilinear filtering results
in images almost indistingusihable from full trilinear filtered images.

Texture Map Formats: Avenger supports avariety of 8-bit and 16-bit texture formats as listed below:

8-bit Texture Formats 16-bit Texture Formats
RGB (3-3-2) RGB (5-6-5)
Alpha(8) ARGB(8-3-3-2)
Intensity(8) ARGB(1-5-5-5)
Alpha-Intensity(4-4) ARGB(4-4-4-4)
YAB(4-2-2) Alpha-Intensity(8-8)
Pal ettedRGB(8 expanded to RGB 8-8-8) Alpha-Paletted RGB(8-8 expanded to RGB 8-8-8)
PalettedRGBA (8 expanded to ARGB 6-6-6-6) AYAB (8-4-2-2)

Avenger includes an internal 256-entry texture palette, which can be downloaded directly from the host
CPU or viaacommand to load the palette directly from texture memory. Either during downloads or
rendering, software programs a palette offset register to control which portion of the texture palette isto
be used.

Texture-space Decompression: Texture data compression is accomplished using a “narrow channel” YAB
compression scheme. 8-bit YAB format is supported. The compression is based on an algorithm which
compresses 24-bit RGB to a 8-bit YAB format with little loss in precision. The compression schemeis
caled “YAB” because it effectively creates a unique color space for each individual texture map -
examples of potential color spaces utilized include Y1Q, YUV, etc. ThisYAB compression algorithm is
especially suited to texture mapping, as textures typically contain very similar color components. The
algorithm is performed by the host CPU, and Y AB compressed textures are passed to Avenger. The
advantages of using compressed textires are increased effective texture storage space and lower bandwidth
reguirements to perform texture filtering.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 21 Updated 12/18/99




d f Avenger High Performance Graphics Engine
3 \ !
A

Polygonal Anti-Aliasing: To eliminate the “jaggies’ on the edges of triangles, Avenger supports polygonal
anti-aliasing. To use the anti-aliasing support in Avenger, triangles must be sorted before rendering,
either back-to-front or front-to-back. When front-to-back triangle ordering is used, the standard OpenGL
alpha-saturate algorithm is used to anti-alias the polygon edges. When back-to-front triangle ordering is
used, standard alpha-blending is used to partially blend the edges of the triangles into the previously
rendered scene. Regardless of which triangle ordering technique is used, the hardware automatically
determines the pixels on the edges of the rendered triangles which are special-cased and rendered with
less than full-intensity to smooth the triangle edges.

Depth-Buffered Rendering: Avenger supports hardware-accelerated depth-buffered rendering with
minimal performance penalty when enabled. The standard 8 depth comparison operations are supported.
To eliminate many of the Z-aliasing problems typically found on 16-bit Zbuffer graphics solutions,
Avenger allows the (/W) parameter to be used as the depth component for hardware-accel erated depth-
buffered rendering. When the (1/W) parameter is used for depth-buffering, a 16-bit floating point format
issupported. A 16-hit floating point(1/W)-buffer provides much greater precision and dynamic range
than a standard 16-bit Z-buffer, and reduces many of the Z-aliasing problems found on 16-bit Z-buffer
systems.

To handle co-planar polygons, Avenger also supports depth biasing. To guarantee that polygons which are
co-planar are rendered correctly, individual triangles may be biased with a constant depth value - this
effectively accomplishes the same function as stenciling used in more expensive graphics solutions but
without the additional memory costs.

Pixel Blending Operation: Avenger supports al pha blending functions which allow incoming source pixels
to be blended with current destination pixels. An aphachannel (ie. Destination alpha) stored in offscreen
memory is only supported when depth-buffering is disabled. The alpha blending function is as follows:

Dnew U (S- a) + (Dold - b)

where

Dnew The new destination pixel being written into the frame buffer
S The new source pixel being generated

Dold Theold (current) destination pixel about to be modified

a The source pixel alphafunction.

b  The destination pixel apha function.

Fog: Avenger supports a 64-entry lookup table to support atmospheric effects such as fog and haze. When
enabled, a 6-bit floating point representation of (/W) is used to index into the 64-entry lookup table. The
output of the lookup tableis an “alpha’ value which represents the level of blending to be performed
between the static fog/haze color and the incoming pixel color. Low order bits of the floating point (1/W)
are used to blend between multiple entries of the lookup table to reduce fog “banding.” The fog lookup
table is loaded by the host CPU, so various fog equations, colors, and effects are supported.

Color Maodes: Avenger supports 16-bit RGB (5-6-5) buffer displays only. Internally, Avenger graphics
utilizes a 32-bit ARGB 3D pixel pipeline for maximum precision, but the 24-bit internal RGB color is
dithered to 16-bit RGB before being stored in the color buffers. The host may also transfer 24-bit RGB
pixelsto Avenger using 3D linear frame buffer accesses, and color dithering is utilized to convert the
input pixelsto native 16-bit format with no performance penalty.

Chroma-Key and Chroma-Range Operation: Avenger supports a chroma-key operation used for
transparent object effects. When enabled, an outgoing pixel is compared with the chroma-key register. If
amatch is detected, the outgoing pixel isinvalidated in the pixel pipeline, and the frame buffer is not
updated. In addition, a superset of chroma-keying, known as chroma-ranging, may be used. Instead of

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 22 Updated 12/18/99



d f Avenger High Performance Graphics Engine
3 \ !
A

matching outgoing pixels against a single chroma-key color, chroma-ranging uses a range of colors for
the comparison. If the outgoing pixel is within the range specified by the chroma-range registers and
chroma-ranging is enabled, then the frame buffer is updated with the pixel.

Color Dithering Operations: All operations internal to Avenger operate in native 32-bit ARGB pixel
mode. However, color dithering from the 24-bit RGB pixelsto 16-bit RGB (5-6-5) pixelsis provided on
the back end of the pixel pipeline. Using the color dithering option, the host can pass 24-bit RGB pixels
to Avenger, which converts the incoming 24-bit RGB pixels to 16-bit RGB (5-6-5) pixels which are then
stored in the 16-bit RGB buffer. The 16-bit color dithering allows for the generation of photorealistic
images without the additional cost of atrue color frame buffer storage area.

Programmable Video Timing: Avenger uses a programmable video timing controller which allows for
very flexible video timing. Any monitor type may be used with Avenger , with 76+ Hz vertical refresh
rates supported at 800x600 resolution, and 100+ Hz vertical refresh rates supported at 640x480 resol ution.
L ower resolutions down to 320x200 are a so supported.

Video Output Gamma Correction: Avenger uses a programmable color lookup table to alow for
programmable gamma correction. The 16-bit dithered color data from the frame buffer is used an an
index into the gamma-correction color table -- the 24-bit output of the gamma-correction color table is
then fed to the monitor

Video Overlay: Avenger supports one full featured video overlay that is unlimited in size, and supports
pixel formats of YUV 411, YUV 422, RGB (1-5-5-5), and RGB (5-6-5). The video overlay can be
double, tripple or quad buffered, and can be bilinear scaled to full screen resolutions.

Video In: VMI video in port with complete host port is fully supported in Avenger. Video inisdouble
buffered and can be optionally deinterlaced by replicating lines in a single frame or by merging 2 frames
together.

PLL/DAC: Avenger contains 3 independent PLL’s for clock generation. The PLL’s aretotally
programmabl e giving the capability to change video, graphics, and memory clocks to any specified
frequency. Avenger supports a high speed 300 MHz ramdac, capable of doing 1600x1280 @ 76Hz
refresh.

3.4 Modificationsfrom SST1

Colbufsetup

Auxbufsetup

Chroma Range

intrCtrl, userintrCMD
fbiTriangles register

Full triangle setup registers
Fogmode

Fogtable

fbzColorPath

fbzMode

increase of rendering window to -4k to 4k
Additional clip rectangle
Byte access Ifb

New command fifo interface
Texture mirroring

Addition of VGA core

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 23 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

Addition of Video surfaces

Additional 6666 palettized texture format

Full featured 2D accelerator engine.

Separate filter controls for Alpha, and RGB.

Combined TMU unit

Increased blending fraction from 1.4 to 1.8.

Separate register / LFB byte swizzling for big endian machines.
PC 97 compliant

3.5 Additionsto Avenger from Banshee

Higher core clock frequency = 143MHz.

Graphics core and memory interface now all run on a master graphics clock.

350MHz RAMDAC.

0.25 micron, 5Im technology

452pin BGA

AGP 2x support

Deeper on-chip command fifo RAM to increase AGP command fifo performance.
Programmable watermarks for Ifb/cmdfifo write fifo (pcilnit0); can increase efficiency of
command transport.

2 TMUs for to enable single-cycle special effects such as trilinear filtering, dual-texturing and
bump-mapping.

tsplit functionality added back in to the TMUs.

Video fetch performance modification (controlled with CYA in vidProcCfg); boost video
performance by making video fifo thresholds more effective.

Increased performance for minified textures (texture fetch engine was modified).
Adjustable delay for TV-out clock.

Support for simultaneous VMI and TV-out.

Additional internal status observability registers.cmdStatusO, cmdStatusl.

Removal of separate mclk domain (mclk domain is now gclk domain).

Two device ID’ s supported: 5=high-speed Avenger, 4=lower speed sort; different PLL
programming is required depending on device ID: see section on PLL programming.

3.6 Programming Notes on Avenger vs. Banshee

Video register changes per TV-out interface: addtion of (VidinStatusCurrentLine,
vidTvOutBlankHCount, vidTvOutBlankV Count, vidlnFor mat,
vidSerialParallelPortRegister, vidlnY DecimDeltas)

Additional flushing code required around texture downloads (Maintaining Cache Coherency,
section 18.3)

Additional texture download aperture: see Avenger Address Space and Command Packet 5
sections.

Software should try to tune video fifo watermarks to boost performance, given the enhanced
video fetch logic.

Programming of PLL depends on device ID: id==5->m, n, k are all fully programmable; id==4
-> misfixed to 0x18 (24d); see section 9.

Problem with V GA-space P6-style write combining is fixed.

Board Note: Because of the presence of an AGP pll, it is strongly recommended that the chip not
be run in AGP pll bypass mode.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 24 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

SDRAM fastfill CM D command must still be done by using just the color-plane fill.
Swapbuffer pending count logic is fixed, and will increment/decrement as described in the
documentation.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 25 Updated 12/18/99



Avenger High Performance Graphics Engine

3dfx

4. Avenger Address Space
M emoryBase0

Memorv Address

0x0000000 — Ox007FEFE

1/0 reqister reman (See 1/0 section below)

0x0080000 — OXO0FFFFE

CMD/AGP transfer/Misc reqisters

0x0100000 — OxO1FFFFF 2D reqisters

0x0200000 — OxO5FFFFF 3D reqisters

0x0600000 — OxO7FFFFF TMUO Texture Download
0x0800000 — OxO09FFFFF TMU1 Texture Download
0x0a00000 — OXOBFFFFF Reserved.

0x0C00000 — OXOFFFFFF YUV planar space
0x1000000 — Ox1FFFFFF 3D LFB space

Memory Basel

Memorv Address

0x0000000 - Ox1FFFFFE | FB snace

/0O BaseO
1/0 Address
0x00 - 0x03 status Renister
Initialization reqisters
0x04 - 0x07 pcilnitO reqister
0x08 - 0x0b sipMonitor register
0x0c - OxOf IfbMemoryConfig reqister
0x10 - 0x13 misclnitO register
0x14 - 0x17 misclnitl register
0x18 - 0x1b draminitO reqgister
Ox1c - Ox1f draminitl reqgister
0x20 - 0x23 agplnit register
0x24 - 0x27 tmuGbelnit register
0x28 - 0x2b vaalnitO register
0x2c - Ox2f vaalnitl register
0x30 - 0x33 dramCommand register (see 2D offset 0x70)
0x34 - 0x37 dramData reqister (see 2D offset 0x064)
0x38 - 0x3b straplnfo
A Video Reqister:
0x3c — Ox3f VidTvOutBlankV Count
PLL and Dacregisters
0x40 - 0x43 plICtrl0
0x44 - 0x47 plICtrll
0x48 - 0x4b plICtrl2
Ox4c - Ox4f dacMode register.
0x50 - 0x53 dacAddr reqgister.
0x54 - 0x57 dacData reqgister.
Video Reqisterspart |
0x58 - Ox5b robMaxDelta register

Copyright O 1996-1997 3Dfx Interactive, Inc.

Proprietary

26

Revision 0.97
Updated 12/18/99



Avenger High Performance Graphics Engine

\J

. ¥

0x5c¢ - Ox5f vidProcCfa reqister.
0x60 - 0x63 hwCurPatAddr reqister.
0x64 - 0x67 hwCurL oc register.
0x68 - 0x6b hwCurCQO reqister
0x6¢C - Ox6f hwCurCl1 register.
0x70 - 0x73 vidlnFormat reqister
0x74 - Ox77 vidTvOutBlankHCount register
0x78 - 0x7b vidSerialPardllelPort reqister
0x7c - Ox7f vidinXDecimDeltas register.
0x80 - 0x83 vidinDecimlInitErrs reqister.
0x84 - 0x87 vidinY DecimDeltas register.
0x88 - 0x8b vidPixelBufThold register
0x8c - Ox8f vidChromaMin reqgister.
0x90 - 0x93 vidChromaMax register.
0x94 - 0x97 vidlnStatusCurrentLine reqister.
0x98 - 0x9b vidScreenSize register.
0x9c - Oxof vidOverlayStartCoords reqister.
0xa0 - Oxa3 vidOverlayEndScreenCoord reqgister.
Oxa4 - Oxa? vidOverlayDudx register
Oxa8 - Oxab vidOverlayDudxOffsetSrcWidth reqister.
Oxac - Oxaf vidOverlayDvdy register.

VGA Reqisters
0xb0 - Oxdf vaaregisters (only in I/O space, not memory mapped)

Video Redisterspart 11
0xe0 - Oxe3 vidOverlayDvdyOffset reqister.
Oxed - Oxe7 vidDesktopStartAddr register.
0xe8 - Oxeb vidDesktopOverlayStride reqister.
Oxec - Oxef vidinAddrO register
0xfO - Oxf3 vidinAddrl register.
0xf4 - Oxf7 vidinAddr2 register.
0xf8 - Oxfb vidinStride register.
Oxfc - Oxff vidCurrOverlayStartAddr register.
VGA Address Space

Memorv Address

0x00A 0000 - OxO0BEEFE

1/0 Addresses (8 hit / 16 hit) addressahle

0x0102

0x03B4 - 0x03B5

0x03BA

0x3CO0 - O0xO3CA

0x03CE - 0x03CF

0x03DA

0x46E8

Copyright O 1996-1997 3Dfx Interactive, Inc.
Proprietary

27

Revision 0.97

Updated 12/18/99



d f Avenger High Performance Graphics Engine
3 \ !
A

5. VGA Register Set

5.1 Overview of the Avenger VGA Controller

The Avenger VGA core supports al standard VGA modes with full backward compatibility. This allows
the 3D controller to be able to share the frame buffer with the 2D controller, thereby saving total solution
cost.

In addition to the legacy VGA, Avenger also supports Vesa BIOS extensions. This is accomplished by
extending the standard register set and implementing a flexible memory aperture such that VBE
applications can page select memory through the standard VGA address space.

5.2 Using VGA Registers When Avenger isnot the Primary VGA

For systems not requiring VGA or aVGA device aready exists, Avenger alows the use of the VGA
registersin an extended fashion. In this mode, VGA registers are not decoded in legacy VGA space, but in
relocatable 1O and memory space.

Avenger should be powered on with the device type set to ‘Multimedia

registers. Avenger will not respond to any legacy 1/0O or memory space. In order to use the VGA registers,
Avenger should be set up to be a motherboard device (VGAINITO bit 8), and the 1O base + 0xc3 bit 0
should be set to 1.

In this configuration, all of the VGA registers (except 0x46e8 and 0x0102) are available by truncating the
leading ‘0x03’ from the legacy address, and adding that address to the /O base address.

Note that in this configuration, however, memory is not accessible through the VGA aperture.

5.3 Locking VGA Timing for Virtualized M odes

When running VGA applicationsin awindow, it is possible to restrict changes to the VGA timing
registers set. Thisis accomplished by setting the lock bitsin vgal nit1l. The locks prevent applications
from changing the values in the associated registers.

5.4 Setting VGA Timing for Video 2 Pixels per Clock Mode

For extended resolutions that run at frequencies greater than 135Mhz, it is required that the Video Unit be
placed in a2 pixel per clock mode. Thisimplies that the video clock is divided by 2 (see dacM ode).
Since the clock is running at half the frequency, al horizontal timing registers should also be divided in
half.

Note: All horizontal video timing must be divisible by 16 pixels.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 28 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

VGA Registers

This section outlines the compatible VGA register set followed by a brief description of their operation.

PORT INDEX |Register Name
0x3B4/0x3D4 |- CRTC Index Register
0x3B5/0x3D5 |0x0 Horizontal Total
0x3B5/0x3D5 |0x1 Horizontal Display Enable End
0x3B5/0x3D5 |0x2 Start Horizontal Blanking
0x3B5/0x3D5 |0x3 End Horizontal Blanking
0x3B5/0x3D5 |0x4 Start Horizontal Retrace
0x3B5/0x3D5 |0x5 End Horizontal Retrace
0x3B5/0x3D5 |0x6 Vertical Tota

0x3B5/0x3D5 |0x7 Overflow

0x3B5/0x3D5 |0x8 Preset Row Scan
0x3B5/0x3D5 |0x9 Maximum Scan Line
0x3B5/0x3D5 |OxA Cursor Start

0x3B5/0x3D5 |0xB Cursor End

0x3B5/0x3D5 |0xC Start Address High
0x3B5/0x3D5 |0xD Start Address Low
0x3B5/0x3D5 |OxE Cursor Location High
0x3B5/0x3D5 |OxF Cursor Location Low
0x3B5/0x3D5 |0x10 |Vertica Retrace Start
0x3B5/0x3D5 |0x11 |Vertical Retrace End
0x3B5/0x3D5 |0x12 |Vertical Display Enable End
0x3B5/0x3D5 |0x13 |Offset

0x3B5/0x3D5 |0x14  |Underline Location
0x3B5/0x3D5 |0x15 [Start Vertical Blank
0x3B5/0x3D5 |(0x16 |End Vertical Blank
0x3B5/0x3D5 |0x17 |CRTC Mode Control
0x3B5/0x3D5 |[0x18 |Line Compare

0x3B5/0x3D5 |0x1A  |Horizontal Extension Register
0x3B5/0x3D5 |0x1B |Vertica Extension Register
0x3B5/0x3D5 |0x1C |Extension Byte O/ PCI Configuration
0x3B5/0x3D5 |0x1D |Extension Byte 1
0x3B5/0x3D5 |Ox1E |Extension Byte 2
0x3B5/0x3D5 |Ox1F |Extension Byte 3
0x3B5/0x3D5 |0x22 |Latch Read Back
0x3B5/0x3D5 |0x24  |Attribute Controller Index/Data State

CRTC Register Set

Read Port Write Port Register Name
0x3CC 0x3C2 Miscellaneous Output

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 29 Updated 12/18/99



df | Avenger High Performance Graphics Engine

¥
0x3C2 -- Input Status Register 0
Ox3BA/Ox3DA| -- Input Status Register 1
O0x3CA 0x3BA/0Ox3DA |Feature Control
0x3C3 0x3C3 Motherboard Enable
-- Ox46E8 Adapter Enable
0x102 0x102 Subsystem Enable

General Register Set

PORT INDEX Register Name

0x3C4 - Sequencer Index Register
0x3C5 0x0 Reset

0x3C5 Ox1 Clocking Mode

0x3C5 0x2 Map Mask

0x3C5 0x3 Character Map Select
0x3C5 0x4 Memory Mode

Sequencer Register Set

PORT INDEX Register Name
0x3CE - Graphics Controller Index Register
Ox3CF 0x0 Set/Reset

Ox3CF Ox1 Enable Set/Reset
0x3CF 0x2 Color Compare
Ox3CF 0x3 Data Rotate
Ox3CF Ox4 Read Map Select
0x3CF 0x5 Graphics Mode
Ox3CF Ox6 Miscellaneous
Ox3CF Ox7 Color Don't Care
Ox3CF 0x8 Bit Mask

Graphics Controller Register Set

PORT INDEX Register Name

0x3C0 0x0-0xF Palette Registers

0x3C0 0x10 Attribute Mode Control Register
0x3C0 0x11 Over Scan Control Register
0x3C0 0x12 Color Plane Enable Register
0x3C0 0x13 Horizontal PEL Panning Register
0x3C0 0x14 Color Select Register

Attribute Controller Register Set

PORT Register Name
0x3C6 Pixel Mask
0x3C7 Read Index
0x3C7 Read Status
0x3C8 Write Index

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 30 Updated 12/18/99




df Avenger High Performance Graphics Engine
3 )
4.

[ox3c9  |Data
RAMDAC Register Set

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 31 Updated 12/18/99



df Avenger High Performance Graphics Engine
3 )
4.

5.5 General Registers:

5.5.1 Input Status 0 (0x3C2)

Bit R/W | Description

7 R Interrupt Status. When itsvalue is “1”, denotes that an interrupt is pending.
6:5 R Feature Connector. These 2 bits are readable bits from the feature connector.
4 R Sense. This hit reflects the state of the DAC monitor sense logic.

3:0 R Reserved. Read back as 0.

Data written to port 0x3C2 is stored in the Miscellaneous Output Register (0x3CC).

55.2 Input Status 1 (0x3BA/Ox3DA)

Bit R/W | Description

7:6 R Reserved. These bits read back 0.

54 R Display Status. These 2 bits reflect 2 of the 8 pixel data outputs from the Attribute
controller, as determined by the Attribute controller index 0x12 bits 4 and 5.

3 Vertical sync Status. A “1” indicates vertical retrace isin progress.

R
2:1 R Reserved. These bits read back 0x2.
0 R Display Disable. When this bit is 1, either horizontal or vertical display end has occurred,
otherwise video datais being displayed.

5.5.3 Feature Control Write (Ox3BA/Ox3DA)

Bit R/W | Description

7:4 - Reserved
3 W Vertical Sync Select
2 - Reserved

1:.0 W Feature Control

5.5.4 Feature Control Read (0x3CA)

Bit R/W | Description

7:6 R Reserved

54 R Video Status. Reads back two bits of the VGA video stream. See 0x3c0, index 0x12, bits

54,
3 R Vertical Sync Select
2 R Reserved
1.0 R Feature Control
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 32 Updated 12/18/99




df Avenger High Performance Graphics Engine
3 )
4.

5.5.5 Miscellaneous Output (0x3CC)

BIT | R/W [ Description

7 R Vertical Sync Polarity (0 = positive, 1= negative).

6 R Horizontal Sync Polarity (0 = positive, 1= negative).

5 R Page Select. When in Odd/Even mode Select High 64k bank if set.

4 R Reserved

32 R Clock Select

1 R Ram Enable (1= Enable)

0 R CRTC I/O Address. (1 = Color. Base Address=0x3D?; 0 = Mono. Base Address=0x3B?).

Datais written to this register via port 0x3C2. Bits 6-7 also indicate the number of lines on the display,

[7:6] Displayed Lines [3:2] Frequency

0 Reserved 0 25.175 Mhz

1 400 1 28.322 Mhz

2 350 2 50 Mhz

3 480 3 Programmable PLL.

while bit 3-2 select the video clock frequency.

5.5.6 Motherboard Enable (0x3C3)

Bit R/W | Description
71 R Reserved
0 R/W | Video Subsystem enable

5.5.7 Adapter Enable (Ox46E8)

Bit R/W | Description

75 R Reserved

4 W Setup Mode

3 W Video Subsystem Enable

2.0 R ROM Bank Address - Unused.

5.5.8 Subsystem Enable (0x102)

Bit R/W | Description

71 R Reserved

0 W Global Subsystem enable

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary

33 Updated 12/18/99




Avenger High Performance Graphics Engine

30X

5.6 CRTC Registers:

The CRTC registers are responsible for the video timing on Avenger. By default, Avenger is a100%
compatible VGA. However, Avenger can also be set up to drive much larger resolutions than that allowed
by the VGA standard.

¢ Horizontal Total >
¢ Horzontal Blanking End > :
¢ Horzontal Retrace End > ' '
R Horzontal Retrace Start > '
< Horzontal Blanking Start > .
< Horzontal Display End > '
AAAA A[
o
£ C
gu
50 %
2022 , .
Thgsa Active Display Area
Wysass T X o
12820 == S o
828X TH 5 8 8 5
SCSETE> m @ 0 m
FEREs = B 3 =
Szeey S Ie E
£5987 S g R S
>3 N = N
> s o S 5
T T T T
v Vertical Border
v Vertical Blank
v Vertical Blank
v Vertical Border
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 34 Updated 12/18/99



df ? Avenger High Performance Graphics Engine

The following chart indicates the bit locations for the timing registers.

10 9 8 7 6 5 4 3 2 1 0

Horizontal

1A[0] [ Of[7] | o6 |05 |of4 |03 (02 |01 |0/
1A[2) | A7) | uel | 15 | 14 [ 3] |2 | 1y | 10
26] 2[5 |24 | 2A3 |22 |21 | 2[0]
IA[S] | 5[7) [ 34 |33 |32 |31 | 3[0]
A5 | 44 |48 |42 |41 |40
IA[7 | 5[4 | S[31 | 5[2] | 5[4 | 5[]

Active End
Start Blank
End Blank

Vertical
Totd 1B[O] | 7[9] 7[0] 6[7] 6[6] 6[5] 6[4] 6[3] 6[2] 6[1] 6[0]
ActiveEnd | 1B[3] | 7[€] 711] 12[7) | 12[6] | 12[5] [ 12[4] | 12[3] | 12[2] | 12[1] | 12[0]
Blank Start | 1B[41 | 951 | 7131 | 15[7] | 15[6] | 45[5] | 454 | 15031 | 45[2] | 451 | 15[0]

16[7] | 16[6] | 16(5] | 16[4] | 16[3] | 1612] | 16[1] | 16[0]
10[3] | 10[2] | 10[1] | 10[0]
1103 | 11[2] | 11{4] | 11[0]

Blank End

56.1 CRTC Index Register (0x3B4/0x3D4)

This register provides index information for any subsequent accesses to 0x3B5/0x3D5.

Bit R/W | Description

7:6 R Reserved

5:0 R/W | CRTC Index Register.

5.6.2 Index OxO-Horizontal Total (0x3B5/0x3D5)

This register defines the total width of the display in character clocks, including retrace time, minus 5.
Bit 8 of thisregister isfound in the Horizontal Extension Register (index Ox1A) bit O.

Bit R/W | Description

70 R/W | Total Horizontal Character Count less 5.

The 5 character clocks are reserved to provide adequate prefetch time for the beginning data on the first
line.

5.6.3 Index Ox1-Horizontal Display Enable End (0x3B5/0x3D5)

This register defines the total number of visible horizontal characters on the display, minus one. Bit 8 of
thisregister isfound in the Horizontal Extension Register (index 0x1A) hit 2.

Bit R/W | Description

7:0 R/W | Display Active Characters -1.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 35 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

5.6.4 Index Ox2-Start Horizontal Blanking (0x3B5/0x3D5)

Horizontal blanking begins when the horizontal character counter reaches this character clock value. Bit 8
of thisregister isfound in the Horizontal Extension Register (index 0x1A) hit 4.

Bit

R/W

Description

7.0

R/W

Start Horizontal Blanking

5.6.5 Index 0x3-End Horizontal Blanking (0x3B5/0x3D5)

Bit R/W | Description

7 R/W | Compatibility Read. When thisbitissetto ‘1’ Vertical Sync Start and Vertical Sync End
are both readable and writeable. When setto ‘0’ these registers are still writeable, but not
readable.

6:5 R/W | Display Enable Signal Skew Control. These bits define the display enable signal skew time
in relation to horizontal synchronization pul ses.

4:0 R/W | End Horizontal Blanking. End Horizontal Blank signal width is determined as the value of

start blanking register plus Win character clocks. The least significant five bits are
programmed in this register, while the most significant bit is the End Horizontal Retrace
Register (Index 0x05) bit 7.

5.6.6 Index Ox4-Start Horizontal Sync (0x3B5/0x3D5)

This register contains the character count at which horizontal sync output pulse becomes active. Bit 8 of
thisregister isfound in the Horizontal Extension Register (index 0x1A) hit 6.

Bit

R/W

Description

7.0

R/W

Start Horizontal Sync Character Count.

5.6.7 Index 0x5-End Horizontal Sync (0x3B5/0x3D5)

Bit R/W | Description

7 R/W | Horizontal Blank Overflow Bit 5. MSB (bit 5) of End Horizontal Blanking Register

6:5 R/W | Horizontal Sync Skew. These hits define the number of character clocks the horizontal
Sync signal is skewed.

4:0 R/W | End Horizontal Sync Pulse Width “W”. Start retrace register value is added to the character
count for width W. The least significant five bits are programmed in this register. When
the Start Horizontal Retrace Register value matches these five bits, the horizontal retrace
signal isturned off.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary

36 Updated 12/18/99




3dfx

5.6.8 Index Ox6-Vertical Total (0x3B5/0x3D5)

Avenger High Performance Graphics Engine

The least significant eight bits of aten bit count of raster scan lines for adisplay frame less2. Time for
vertical retrace, and vertical sync are also included. The ninth and tenth bits of this count are loaded into
the Vertical Overflow Register (Index 0x7) bit O and bit 5 respectively. Bit 8 of this register isfound in the

Horizontal Extension Register (index 0x1B) bit O.

Bit

R/W

Description

7.0

R/W

Raster Scan Line Total Less 2.

5.6.9 Index Ox7-Overflow (0x3B5/0x3D5)
This register contains * Overflow’ bits from other CRTC registers.

Bit R/W | Description Base | ndex
7 R/W | Vertical Sync Start Bit 9. 0x10

6 R/W | Vertical Display Enable End Bit 9. 0x12

5 R/W | Vertical Total Bit 9. Ox6

4 R/W | Line Compare Bit 8. 0x18

3 R/W | Start Vertical Blank Bit 8. 0x15

2 R/W | Vertical Retrace Start Bit 8. 0x10

1 R/W | Vertical Display Enable End Bit 8. 0x12

0 R/W | Vertical Total Bit 8. Ox6

5.6.10 Index 0x8-Preset Row Scan (0x3B5/0x3D5)

BIT | R/W [ Description

7 R Reserved.

6:5 R/W | Byte Panning Control. These bits allow up to 3 bytes to be panned in modes programmed
as multiple shift modes.

4:0 R/W | Preset Row Scan Count. These bits preset the vertical row scan counter once after each

vertical retrace. This counter isincremented after each horizontal retrace period, until the
maximum row scan count is reached. When maximum row scan count is reached, the
counter is cleared. This register can be used for smooth vertical scrolling of text.

(15 L eft Shift

0 0 0 Pixels

0 1 8 Pixels

10 16 Pixels

11 24 Pixels
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 37 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

5.6.11 Index 0x9-Maximum Scan Line (0x3B5/0x3D5)

Bit R/W | Description

7 R/W | Line Doubling. 0= Normal Operation. 1 = Activate line doubling.

6 R/W | Line Compare. Bit 9 of the Line Compar e Register (index = 0x18).

5 R/W | Start Vertical Blank. Bit 9 of the Start Vertical Blank Register (index = 0x15).

4:0 R/W | Maximum Scan Line. Maximum number of scanned lines for each row of characters. The
value programmed is the maximum number of scanned rows per character minus 1.

5.6.12 Index OxA-Cursor Start (0x3B5/0x3D5)

Bit R/W | Description

7:6 R Reserved. Defaultsto O.

5 R/W | Cursor Control. 0=Cursor on, 1= Cursor off.

4:0 R/W | Cursor Start Scan Line These bits specify the row scan counter value within the character
box where the cursor begins. These bits contain the value of the character row less 1. If
this value is programmed with a value greater than the Cursor End Register (index =
0xB), no cursor is generated.

5.6.13 Index OxB-Cursor End (0x3B5/0x3D5)

Bit R/W | Description

7 R Reserved. Defaultsto O.

6:5 R/W | Cursor Skew Bits. Delays the displayed cursor to the right by the skew value in character
clocks e.g., 1 character clock skew maoves the cursor right by 1 position on the screen.

4:0 R/W | Cursor End Scan Line. These bits specify the last row scan counter value within the
character box during which the cursor is active. If thisvalueis less than the cursor start
value, no cursor is displayed.

5.6.14 Index OXC-Start Address High (0x3B5/0x3D5)

Eight high order bits of the 16 bit video memory address, used for screen refresh. The low order eight bit
register is at index OxD.

Bit R/W | Description

7:0 R/W | Display Screen Start Address Upper Byte Bits.

5.6.15 Index OxD-Start Address L ow (0x3B5/0x3D5)
The lower order eight bits of the 16 bit video memory address.

Bit R/W | Description

7:0 R/W | Start Address Low Byte.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 38 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

5.6.16 Index OXE-Cursor Location High (0x3B5/0x3D5)

The eight higher order bits of 16 bit cursor location in VGA modes. For the lower order eight bits, see the
Cursor Location Low Register at index OxF.

Bit R/W | Description

7:0 R/W | Cursor Address Upper Byte Bits.

5.6.17 Index OxF-Cursor Location Low (0x3B5/0x3D5)

Bit R/W | Description

7.0 R/W | Cursor Address Lower Byte Bits. The lower order eight bits of the 16 bit video memory
address.

5.6.18 Index 0x10-Vertical Retrace Start (0x3B5/0x3D5)

The lower eight bits of the ten bit Vertical Retrace Start Register. Bits8 and 9 are located in the
Overflow Register (index = 0x7). Bit 10isinthe Vertical Extension Register (index 0x1B) hit 6.

Bit R/W | Description

7.0 R/W | Vertical Sync Start Pulse Lower Eight Bits.

5.6.19 Index Ox11-Vertical Retrace End (0x3B5/0x3D5)

Bit R/W | Description

7 R/W | CRTC Registers Write Protect. When this bit is 0, writes to CRT index registers 0x0 to Ox7
are enabled. When thisbit is 1, writesto CRT Controller index registers in the range of
index 0x0 to 0x7 are protected except line compare bit 4 in the Overflow Register 0x7.

6 R/W | DRAM Refresh/Horizontal Scan Line. Historically, this register selected DRAM refresh
cycles per horizontal scan line. Thisfunction is not implemented.

5 R/W | Enable Vertical Retrace Interrupt. (O=Enable, 1= Disable)

4 R/W | Clear Vertical Retrace Interrupt. (O=Clear Vertical retrace interrupt, 1= Allow an interrupt
to be generated after the last displayed scan of the frame has occurred (i.e., the start of the
bottom border).

3.0 R/W | Vertical Retrace End. This register specifies the scan count at which vertical sync becomes
inactive. For retrace signal pulse width W, add scan counter for W to the value of the
Vertical Retrace Start Register. The 4 bit result iswritten in the Vertical Retrace End
Register.

5.6.20 Index Ox12-Vertical Display Enable End (0x3B5/0x3D5)

This register specifies the eight lower bits of ten bit register that defines where the active display frame
ends. The programmed count isin scan lines minus 1. Bit 8 and 9 are in the Overflow Register (index
0x7) at bit positions 1 and 6 respectively. Bit 10 isin the Vertical Extension Register (index Ox1b) bit 2.

Bit R/W | Description

7:0 R/W | Vertical Display Enable End Lower Eight Bits.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 39 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

5.6.21 Index 0x13-Offset (0x3B5/0x3D5)

This register specifies the width of display memory in terms of an offset from the current row start address
to the next character row. The offset value is aword address adjusted for word or double word display
MEeMmOory access.

Bit R/W | Description

7:0 R/W | Logica Line Screen Width.

5.6.22 Index 0x14-Underline L ocation (0x3B5/0x3D5)

Bit R/W | Description

7 R Reserved.

6 R/W | Double Word Mode. (0 = Display memory addressed for byte or word access. 1= Display
memory addressed for double word access).

5 R/W | Count By 4 For Double Word Access. (0= Memory address counter clocked for byte or
word access, 1 = Memory address counter is clocked at the character clock divided by 4.)

4:0 R/W | Underline Location. These bits specify the row scan counter value within a character
matrix where under lineisto be displayed. Load avalue 1 less than the desired scan line
number.

5.6.23 Index Ox15-Start Vertical Blank (0x3B5/0x3D5)

The lower eight bits of the ten bit Start Vertical Blank Register. Bit 8 isin the Overflow Register (index
= 0x7) and bit 9isin the Maximum Scan Line Register (index = 0x9). Theten bit value isreduced by 1
from the desired scan line count where the vertical blanking signal starts.

Bit R/W | Description

7:0 R/W | Start Vertical Blank Lower Eight Bits.

5.6.24 Index 0x16-End Vertical Blank (0x3B5/0x3D5)

Bit R/W | Description

70 R/W | Vertical Blank Inactive Count.

End Vertical Blank is an 8 bit value calculated as follows:
End Vertical Blank = (Start Vertical Blank - 1) + (Vertical Blank signal width in scan lines).

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 40 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

5.6.25 Index 0x17-CRTC Mode Control (0x3B5/0x3D5)

Bit R/W | Description

7 R/W | Sync Enable. (0= retrace outputs disabled, 1= retrace outputs enabled)

6 R/W | Word or Byte Mode. (0= Word address mode, 1= Byte address mode)

5 R/W | Address Wrap. In word address mode, setting this bit to 0 enables bit 13 to appear at MAO,
otherwise in byte address mode bit 0 appears on MAO. Setting this bit to 1 selects MA15
for odd/even mode.

4 R Reserved.

3 R/W | Count by 2 (0 = Character clock increments memory address counter, 1= Character clock
divided by 2 increments the address counter).

2 R/W | Horizontal Retrace Clock Rate Select For Vertical Timing Counter. 0= Normal, 1= Selects
horizontal retrace clock rate divided by 2.)

1 R/W | Select Row Scan Counter.0=Selects row scan counter bit 1 as output at MA14 address pin.1
Selects bit 14 of the CRTC address counter as output at MA14 pin.

0 R/W | 6845 CRT Controller compatibility mode support for CGA operation. 0 = Row scan

address bit 0 is substituted for memory address bit 13 at MA 13 output pin during active
display time. 1=Enable memory address pin 13 to be output at MA13 address pin.

5.6.26 Index 0x18-Line Compar e (0x3B5/0x3D5)

Bit

R/W

Description

7.0

R/W

Line Compare Lower Eight Bits. Lower eight bits of the ten bit Scan Line Compare
Register. Bit 8 isinthe Overflow Register (index = 0x7) and bit 9 isin the Maximum
Scan Line Register (index = 0x9). When the vertical counter reaches this value, the
internal start of the line counter is cleared.

5.6.27 Index Ox1A-Horizontal Extension Register (0x3B5/0x3D5)

This register is an extension of the VGA core in order to increase the total horizontal resolution available
to Avenger. Thisregister isonly active when VGAINITO bit 6is‘1’.

Bit R/W | Description Base | ndex
7 R/W | Horizontal Retrace End bit 5. -

6 R/W | Horizontal Retrace Start bit 8 0x4

5 R/W | Horizontal Blank End bit 6. -

4 R/W | Horizontal Blank Start bit 8. 0x3

3 R/W | Reserved. -

2 R/W | Horizontal Display Enable End bit 8. Ox1

1 R/W | Reserved. -

0 R/W | Horizontal Total bit 8. 0x0

5.6.28 Index Ox1B-Vertical Extension Register (0x3B5/0x3D5)

This register is an extension of the VGA core in order to increase the total Vertical resolution available to
Avenger. Thisregister isonly active when VGAINITObit6is‘1’.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary

41 Updated 12/18/99




fr
10/4.
R/W

Avenger High Performance Graphics Engine

Bit Description Base | ndex
7 R/W | Reserved -

6 R/W | Vertical Retrace Start bit 10 0x10

5 R/W | Reserved. -

4 R/W | Vertical Blank Start bit 10. 0x15

3 R/W | Reserved. -

2 R/W | Vertical Display Enable End bit 10 0x12

1 R/W | Reserved. -

0 R/W | Vertical Total bit 10. 0x6

5.6.29 Index 0x1C-PCl Config/Extension Byte 0 (Ox3B5/0x3D5)

On power up, the AVENGER is configured to allow read back of the PCI configuration information a byte
at atime through this register. In order to use this feature, first follow the standard wake up sequence. To
selectively read back configuration information, write the index into this register. Data read back from this
register is the configuration byte at that index.

Bit

R/W

Description

7.0

R/W

PCI Configuration/Scratch Pad Register.

The use of the extended register space is decoded as follows:

7

VGAINITO

6 Description

Allow Configuration data to be read back from PCI (Indexed)

0
0
1

0
1 Extended registers Are scratch Pad
X Extended registers Disabled

5.6.30 Index Ox1D-Extension Byte 1 (0x3B5/0x3D5)
This register isonly active when VGAINITO bit 6is‘1’

Bit R/W | Description
7:0 R/W | Scratch Pad Register.
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary

42 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

5.6.31 Index Ox1E-Extension Byte 2 (0x3B5/0x3D5)
This register isonly active when VGAINITO bit 6is‘1’

Bit R/W | Description

7:0 R/W | Scratch Pad Register.

5.6.32 Index Ox1F-Extension Byte 3 (0x3B5/0x3D5)
This register isonly active when VGAINITO bit 6is‘1’

Bit R/W | Description

7:0 R/W | Scratch Pad Register.

5.6.33 Index 0x20-Vertical Counter pre-load L ow (0x3B5/0x3D5)

This register, in combination with index 0x20, allows the vertical counter to be pre-loaded for testing
purposes. The vertical counter is pre-loaded on reset, which can be caused either through a hard reset or a
soft reset. Thisregister is only active when VGAINITObit 6is‘1’.

Bit R/W | Description

7.0 R/W | Scratch Pad Register.

5.6.34 Index 0x21- Vertical Counter pre-load High(0x3B5/0x3D5)
Thisregister is only active when VGAINITO bit 6is‘1’

Bit R/W | Description

2.0 R/W | Scratch Pad Register.

5.6.35 Index 0x22-L atch Read Back (0x3B5/0x3D5)

Bit R/W | Description

7.0 R/W | Latch Data Register. Thisregister reflects the contents of one of the four Graphics Data
Controller latches. The plane selected for read back is determined by Graphics Controller
Read Map Select Register (index 0x4) bits0 and 1.

5.6.36 Index Ox24-Attribute Controller Index/Data State (0x3B5/0x3D5)

Bit R/W | Description

7 R Attribute Controller Index/Data State. When thisis 1, the Attribute controller register is set
to ‘Data state. When set to O, the Attribute controller register is set to ‘Index’ state.
Reading 0x3DA will always put the Attribute Controller back to Index State.

6.0 R Reserved.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 43 Updated 12/18/99




df Avenger High Performance Graphics Engine
3 )
4.

5.6.37 Index 0x26-Display Bypass/Attribute Controller Index (0x3B5/0x3D5)

Bit R/W | Description
5 R Display Bypass. Reflects the value of the Attribute Controller index register, bit 5.

4.0 R Attribute index.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 44 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

5.7 GraphicsController Registers:

5.7.1 GraphicsController Index Register (0x3CE)

Data written to this 8 register reflects the index of the Graphics Controller register space accessed through
Ox3CF.

Bit R/W | Description

74 R Reserved.

3.0 R/W | Index for accesses at Ox3CF.

5.7.2 Index 0-Set/Reset (0x3CF)

Bit R/W | Description

74 R Reserved.

30 | RW | Set/Reset Map.

When the CPU executes display memory write with Write Mode O selected and the Enable Set/Reset
Register (index = 0x1) activated, the eight bits of the value in this register, which have been operated on
by the Mask Register, are then written to the corresponding display memory map. It isan eight fill
operation. The map designations are defined below:

0 Reset.
1 Set.

5.7.3 Index 1-Enable Set/Reset (0x3CF)

Bit R/W | Description

74 R Reserved.

3.0 R/W | Enable Set/Reset Register (Index 0x0). When Write Mode O is selected, these bits enable
memory map access defined by the Set/Reset Register (index = 0x0), and the respective
memory map is written with the Set/Reset Register value.

5.7.4 Index 2-Color Compar e (0x3CF)

The color compare contains the value to which all 8 bits of the corresponding memory map are compared.

This comparison also occurs across al four maps, and a1 is returned for the map positions where the bits

of all four maps equal the Color Compare Register. If asystem read is done with 3 =0 for the Graphics
Mode Register (index = 0x5), datais returned without comparison. Color compare map coding is shown

below.

Bit R/W | Description

74 R Reserved.

3:0 R/W | Color Compare.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 45 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

5.7.5 Index 3-Data Rotate (0x3CF)

Bit R/W | Description

75 R Reserved.

4:3 R/W | Function Select. Function select for any of the write mode operations defined in the
Graphics M ode Register (index = 0x5) is defined in the following table.

2.0 R/W | Rotate Count. These bits specify number of positions of rotation to the right and is

ineffective in write mode 2, defined by the Graphics Mode Register (index =0x5).

4 | 3 | Function
0 | 0O | Move

0 |1 [And

1 (0 |Or

1 1]1 | Xor

5.7.6 Index 4-Read Map Select (0X3CF)

Bit R/W | Description
7.2 R Reserved.
1.0 R/W | Map Select. These hits select memory map in system read operations. It has no effect on

color compare read mode. In odd/even modes, the value can be 0x0 or Ox1 to select
chained maps 0 & 1 or value 0x2 or 0x3 to select the chained maps 2 & 3.

5.7.7 Index 5-Graphics M ode (0x3CF)

Bit R/W | Description

7 R Reserved.

6:5 R/W | Shift Mode.
00 = datais shifted out normally.
01 = datais shifted out Even/Odd
1x = 256 Color Mode shift

4 R/W | CGA compatible Odd/Even Mode. When setto ‘1’ , Sequential addressing is as defined by
bit 2 of the Memory Mode Register (index = 0x4) in the Sequencer Register. Even
system addresses access maps 0 or 2 and odd system addresses access maps 1 or 3.

3 R/W | Read Mode. When set to 0, System reads data from memory maps selected by Read M ap
Select Register (index 0x4). This setting has no effect if bit 3 of the Sequencer Memory
Mode Register = 1. When set to 1, System reads the comparison of the memory maps and
the Color Compare Register.

2 R Reserved.

1:0 R/W | Write Mode. The table on the following page defines the four write modes.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary

46 Updated 12/18/99




Avenger High Performance Graphics Engine

3 Bits | Write | Description

1.0 | Mode

00 0 CPU or data from the Set/Reset Register is written to graphics memory.
01 1 Latch data is written to graphics memory

10 2 Plane n isfilled with data bit n

11 3 The addressed byte in each plane isfilled with the value of the

corresponding bitsin the Set/Reset Register (index 0x0). The Enable
Set/Reset Register (index 0x1) has no effect. Rotated CPU datais
logically ANDed with the Mask Register (index 0x8).

5.7.8 Index 6-Miscellaneous (Ox3CF)

Bit R/W | Description

74 R Reserved.

3:2 R/W | Memory Map 1,0 Display memory map control into the CPU address space is shown in the
following table.

1 R/W | Odd/Even Mode. When set to 1, CPU address AQ is replaced by higher order address bit.
AOQisthen used to select odd or even maps. A0 =0 selectsmap 0 or 2, while AO=1
selectsmap 1 or 3.

0 R/W | Graphicg/Alphanumeric Mode. 0 = Alphanumeric mode, 1= Graphics mode.

3 | 2 | Physica Address Size Typica Usage

0 | 0 | OXA0000 128K None

0 |1 | OxA0000 64K EGA/V GA/Extended Graphics Modes
1 | 0 | OxBOOOO 32K Monochrome Text Modes

1 |1 | 0xB8000 32K Color Text /| CGA Graphics Modes

5.7.9 Index 7-Color Don't Care (0x3CF)

Bit R/W | Description

74 R Reserved.

3:0 R/W | Memory Map Color Compare Operation. 1=Enable, 0 = Disable.

5.7.10 Index 8-Mask (Ox3CF)

Mask operation applies simultaneously to all the four maps. In Write Modes 0 and 2, this register
provides selective changes to any stored in the system latches during processor writes. Data must be first
latched by reading the addressed byte. After setting the Mask Register, new datais written to the same
byte in a subsequent operation. Mask operation is applicable to any data written by the processor.

Bit R/W | Description

7.0 R/W | Mask. 0 = Mask, 1 = Disable mask.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 47 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

5.8 Attribute Registers

5.8.1 Attribute Index Register (0x3COQ)

The Attribute Index Register has an internal flip-flop, rather than an input bit, which controls the
selection of the Address and Data Registers. Reading the Input Status Register 1 (port = 0x3BA/0x3DA)
clears the flip flop and selects the Address Register, which is read through address 0x3C1 and written at
address 0x3C0. Once the Address Register has been loaded with an index, the next write operation to
0x3CO will load the Data Register. The flip-flop toggles between the Address and the Data Registers after
every write to address hex 0x3CO, but does not toggle for reads to address 0x3C1.

Bit R/W | Description

7:6 R Reserved.

5 R/W | Palette Address Source. (0=Disable palette outputs, 1=Enable pal ette outputs.)

4:0 R/W | Attribute Controller Index Register Address Bits

5.8.2 Index OxO0 through OxF-Palette Registers (0x3C0/3C1)

The Palette Registers are effectively alookup table 6 bits wide by 16 levels deep. The purpose of this
lookup table isto allow dynamic color mapping from the original video data stream. The palette provides
atrandation from 4 bits to 6 bits of data. The palette output data is either combined with the Color Select
Register (index 0x14), or two the result of two shifts are appended together, resulting in an 8 bit video
stream.

Bit R/W | Description

7:6 R Reserved.

5.0 R/W | Palette Pixel Colors.

5.8.3 Index 10-Attribute Mode Control Register (0x3C0)

Bit R/W | Description

7 R/W | VID5, VID4 Select (0=Use palette outputs, 1=use Color select Register index 0x14.)

6 R/W | Pixel Width (0= one pixel every VCLK, 1 = one pixel every 2 VCLK)

5 R/W | Pixel Panning Compatibility. (O=Enable Pixel Pan on line compare, 1 = disable on line
compare)

4 R Reserved.

3 R/W | Background Intensity/Blink Selection. (0= MSB of attribute is background color, 1= MSB of
attribute is blink)

2 R/W | Line Graphics Character Code. Setting this bit to O forces ninth dot to be the same color as
background in line graphics character codes. Setting this bit to 1 forces the ninth dot
character to be identical to the eighth character dot. Set thisto zero for character fonts that
do not utilize line graphics character codes.

E

Mono/Color Emulation. (0O=Color, 1 = Mono)

0 R/W | Graphics/Alphanumeric Mode Enable. (O=al phanumeric, 1= graphics)

5.8.4 Index 11-Over Scan Control Register (0x3CO0)
This register determines the over scan or border color. For monochrome displays, this register is set to O.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 48 Updated 12/18/99




Bit

fr
10/4.
R/W

Avenger High Performance Graphics Engine

Description

7.0

R/W

Over Scan/Border Color

5.8.5 Index 12-Color Plane Enable Register (0x3CQ)

Bit R/W | Description

7:6 R Reserved.

54 R/W | Video Status Control. These bits select 2 out of 8 color outputs which can be read by the
Input Status Register 1 (port = 0x3BA/0x3DA) bits 4 and 5.

3:0 R/W | Color Plane Enable. Setting a bit to O disables the respective color plang(s).

5.8.6 Index 13-Horizontal Pixel Panning Register (0x3CO0)

These bits select pixel shift to the left horizontally. For 9 dots/character modes, up to 8 pixels can be
shifted horizontally to the left. Likewise, for 8 dots/character up to 7 pixels can be shifted horizontally to
the left. For 256 color, up to 3 position pixel shifts can occur.

Bit R/W | Description
74 R Reserved.
3:0 R/W | Horizontal Pixel Panning. Seetable.

Jits[3:0] | ' bit text | '56 color | dther
0x0 1 0 0
0x1 2 Y% 1
0x2 3 1 2
0x3 4 1% 3
0x4 5 2 4
0x5 6 2% 5
0x6 7 3 6
0x7 8 3% 7
0x8-Oxf |0 -1 -1

5.8.7 Index 14-Color Select Register (0x3CO0)

Bit R/W | Description

74 R Reserved.

3:2 R/W | Color Value MSB. Two most two significant bits of the eight digit color value for the video
DAC. They are normally used in all modes except 256 color graphics.

1.0 R/W | Substituted Color Value Bits. These bits can be substituted for VID5 an VID4 output by the
Attribute Controller palette registers, to create eight color value. They are selected by the
Attribute Controller M ode Control Register (index = 0x10).

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary

49 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

5.9 Sequencer Registers

5.9.1 Sequencer Index Register (0x3c4)

Bit

R/W

Description

7.0

R/W

Index for accesses at 0x3cb.

5.9.2 Index O-Reset (0x3c5)

Bit R/W | Description

7.2 R Reserved.

1 R/W | Synchronous Reset. 0=Video Timing is cleared and halted. Thisisused to synchronize
changing the either bits 3 or 2 of the Miscellaneous Output Register. 1= Operational
mode.

0 R/W | Asynchronous Reset. 0=Sequencer is cleared and halted asynchronously. Thisbitis used

to force the Sequencer into areset state, regardless of the operation it is performing.
1=Operational mode.

5.9.3 Index 1-Clocking M ode (0x3c5)

Bit R/W | Description

7:6 R Reserved

5 R/W | Screen Off. When thisbit is set to 1 the screen turned off, all requests for video FIFO
refresh are disabled, allowing additional bandwidth for other memory operations. SYNC
signals remain active.

4 R/W | Video Serial Shift Register Loading. When this bit is O, serial shift registers are loaded
every character or every other character clock depending on bit 2 of this register;
otherwise when this bit is 1, Serial shift registers loaded every 4™ character clock (32
fetches).

3 R/W | Dot Clock Selection (0= Normal dot clock selected by VCLK input frequency, 1 = Dot
Clock divided by 2 (used for 320/360 pixel width display modes).

2 R/W | Shift Load. Thisisonly effectiveif bit 4 of thisregister = 0. (0=Video seridizers will be
loaded every character clock, 1 = Video serializers are |oaded every other character
clock).

1 R Reserved.

0 R/W | 8/9 Dot Clock. (0= 9 dot wide character clock, 1 = 8 dot wide character clock)

5.9.4 Index 2-Map Mask (0x3c5)

Bit R/W | Description

74 R Reserved.

3:0 R/W | Map Enables. If abit is 0, writing to the corresponding map(0-3) is disabled.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary

50 Updated 12/18/99




df Avenger High Performance Graphics Engine
3 )
4.

5.9.5 Index 3-Character Map Select (0x3c5)

If Sequencer Register index 4 bit 1 is 1, then the attribute byte 3 in text modes is redefined to control
switching between character sets in alphanumeric modes. An attribute of 0 selects character map B,
while a 1 selects character map A.

Bit R/W | Description
7:6 R Reserved.
5 R/W | Character Map A High Select. The Most Significant (MSB) of character map A along with
bits 3 and 2, select the location of character map A as shown below.
4 R/W | Character Map B High Select. The MSB of character map B along with bits 1 and O, select
the location of character map B as shown below.
3:2 R/W | Character Map Select A. Refer to Character Map A Select table.
1:0 R/W | Character Map Select B. Refer to Character Map B Select table.
Bit Map Table L ocation

5 3 2 | Selected (Maps2or 3)

0 0o [o]o 198K

0 0 1 ]2 398K

0 1 [o 2 578K

0 1 1 [3 7" 8K

1 0 [o 4 28K

1 0 1[5 4" 8K

1 1 [o [6s6 6" 8K

1 1 1 ]7 8™ 8K

Character Map A Select
Bit Map Table L ocation

4 1 0 | Selected (Maps2or 3)

0 0o [o]o 198K

0 0 1 ]2 398K

0 1 [o 2 578K

0 1 1 ]3 7" 8K

1 0 [o 4 28K

1 0 1[5 4" 8K

1 1 [o [6s6 6" 8K

1 1 1 ]7 8™ 8K

Character Map B Select

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary

51 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

5.9.6 Index 4-Memory Mode (0x3c5)

Bit R/W | Description

74 R Reserved.

3 R/W | Chain 4 Maps. (0= Processor sequentially accesses data using map mask register, 1 = The
two lower order video memory address pins (MAO,MA1) to select the map to be
addressed)

2 R/W | Odd/Even. Bit 3 of this register must be O for this hit to be effective. (0=0dd/Even Mode,
1 =Normal)

1 R/W | Extend Memory. (0= restrict size to 16/32K, 1= allow 256K).

0 R Reserved

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary

52 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

5.10 RAMDAC Registers

5.10.1 RAMDAC Pixel Mask (0x3c6)

Bit R/W | Description

7.0 R/W | RAMDAC pixel mask

The contents of this register are logically ANDed with the output of the VGA data stream beforeiit is
presented to the RAMDAC. The value of this register has no effect on modes other than VGA.

5.10.2 RAMDAC Read Index /Read Status (0x3c7)

Bit R/W | Description

7.0 W RAMDAC Read Index

1:0 R RAMDAC State. 0 = aread operation isin effect, 3 = awrite operation isin effect.

When data is written to this register, it causes the CLUT to go into a‘Read State’. It should be followed
be three consecutive reads of 0x3c9 in order to retrieve the red, green and blue values of the CLUT. This
index will auto increment following the completion of the last dataread. Note that only the first 256
locations of the CLUT may be accessed viathis port.

When data is read from this register, bits 1:0 indicate the read/write state of the CLUT.

5.11 RAMDAC WriteIndex (0x3c8)

Bit R/W | Description

70 R/W | RAMDAC Write Index

When data is written to this register, it causes the CLUT to go into a‘Write State’. 1t should be followed
be three consecutive writes of 0x3c9 in order to store the red, green and blue values of the CLUT. This
index will auto increment following the completion of the last data write. Note that only the first 256
locations of the CLUT may be accessed viathis port.

5.11.1 RAMDAC Data (0x3c9)

Bit R/W | Description

7.0 R/W | RAMDAC palette data

This register contains the data written to the CLUT. Datain this register is either 6 bit (V GA compatible)
or 8 bit, as determined by VGAINITO bit 2. When dataisin 6 bit format, the 2 MSBs are replicated into
the 2 LSBs to maintain full scale and linearity on the DAC.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 53 Updated 12/18/99




df ? Avenger High Performance Graphics Engine

6. Accessing memory in VESA modes

VGA isrestricted to only see 128K of memory through 0XOA0000. This supports baseline VGA graphics
modes well; however, extended resolutions and video color depthsin VESA modes require use of more
memory than that allowed by the VGA standard.

Access to the entire frame buffer is available in VESA modes through a method of re-mapping the
0x0A0000 host memory space into part of the video memory. Memory accessed through 0xOA0000 in
VESA modes is unaffected by the settings of the Graphics Control or Sequencer Registers.

There are two aperture controls, one for reading memory and one for writing memory. This allows
memory to be moved from addresses greater than 64K apart without frequently modifying the aperture
pointers. Each aperture can point to video memory anywhere along a 32K boundary.

Hosts View of Memory in

VESA Modes

System Video Memory

Memory
OXOFFFFF OXFFFFFF
OxOBFFFF 64K Read Aperture
0
XOAFFFF 64K
0x0A0000

Write Aperture
0x0 0x0
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 54 Updated 12/18/99



df Avenger High Performance Graphics Engine
3 )
4.

7. 2D

7.1 2D Register Map

Memory Base 0: Offset 0x0100000

Register Name | Address Reg | Bits | R/IW Description

status 0x000(0) 0x0 | 31:0 | R | Avenger status register

intCtrl 0x004(4) Ox1 | 31:0 | R/W | Interrupt control and status

clipOMin 0x008(8) 0x2 280 | R'W [ MinX & Y clip valueswhen clip selectis0
clipOMax 0x00c(12) 0x3 280 | RIWW [ Max X & Y clip valueswhen clip select isO
dstBaseAddr 0x010(16) 0x4 23.0 | R/W | Destination base address

dstFormat 0x014(20) 0x5 17.0 | R/W | Destination stride and bits per pixel

srcColorkeyMin 0x018(24) 0x6 23:.0 | R'W [ Source Colorkey range (min)

srcColorkeyMax | Ox01c(28) 0x7 23:.0 | R'W [ Source Colorkey range (max)

dstColorkeyMin 0x020(32) 0x8 23.0 | R'W [ Destination Colorkey range (min)

dstColorkeyMax | 0x024(36) 0x9 23.0 | R'W [ Destination Colorkey range (max)

bresError0Q 0x028(40) OxA [ 31.0 [ R'W | Initia error for lines, right edges & stretch blt x
bresErrorl 0x02c(44) 0xB 31:0 | R/'W | Initial error for left poly edges & stretch blt y
rop 0x030(48) O0xC [ 31.0 [ R'W | 4 Ternary Raster operations

srcBaseAddr 0x034(52) O0xD | 23:.0 [ R'W | Source base address

commandExtra 0x038(56) OxE [ 31.0 | R’'W | Extracontrol bits

lineStipple 0x03c(60) OxF 31:0 | R'W [ Monochrome pattern for lines

lineStyle 0x040(64) 0x10 [ 28:0 | RIW | Styleregister for lines

patternOAlias 0x044(68) 0x11 [ 31.0 [ R'W | Aliasto colorPattern(0)

pattern1Alias 0x048(72) 0x12 [ 31.0 [ R’'W | Aliasto colorPattern(1)

clipIMin 0x04c(76) 0x13 [ 280 | R'W | Min X & Y clip values when clip select is 1
cliplMax 0x050(80) 0x14 [ 280 [ R'W | Max X & Y clip valueswhen clip select is 1
srcFormat 0x054(84) 0x15 [ 18:0 [ R/W | Source stride and bits per pixel

srcSize 0x058(88) 0x16 [ 28:0 | R'IW | Height and width of source for stretch blts
seXY 0x05¢(92) 0x17 | 28:0 | RIW | Starting pixel of blt source data

Starting position for lines
Top-most point for a polygon fill

colorBack 0x060(96) 0x18 [ 31.0 | R’'W | Background color
colorFore 0x064(100) | O0x19 | 31.0 | R/W | Foreground color
dstSize 0x068(104) | Ox1A | 28:0 | R/W | Destination width and height for blts and
rectangle fills
dstXY 0x06c(108) | Ox1B | 28:0 | R/W | Starting X and Y of destination for blts
End point for lines
command 0x070(112) | Ox1C | 31:.0 | R/'W | 2D command mode & control bits
RESERVED 0x074(116) | Ox1D | 31.0 Do not write
RESERVED 0x078(120) | Ox1E | 31.0 Do not write
RESERVED 0x07c(124) | Ox1F | 31.0 Do not write
launchArea 0x080(128) | 0x20 | 31.0 | R Initiates 2D commands
to to
0xOff(255) Ox3F
colorPattern 0x100(256) | Ox40 | 31:0 | R/W | Pattern Registers (64 entries)
to to

0x1fc(508) Ox7F

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 55 Updated 12/18/99



df Avenger High Performance Graphics Engine
3 )
4.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 56 Updated 12/18/99



df ; Avenger High Performance Graphics Engine
3 )
A

7.2 Register Descriptions
The 2D register set is described in the sections below.

All 2D registers can be read, and all registers except for the status register are fully write-able. Reading a
2D register will always return the value that will be used if a new operation is begun without writing a
new value to that register. This value will either be the last value written to the register, or, if an operation
has been performed since the value was written, the value after all operations have completed.

All registers for the 2D section are unsigned unless specified otherwise.

7.2.1 statusRegister

The status register provides away for the CPU to interrogate the graphics processor about its current state
and FIFO availability. The status register isread only, but writing to status clears any Avenger generated
PCI interrupts. For the definition of this register please see section XXX on PCI configuration and
Initialization registers.

7.2.2 command Register

The command register sets the command mode for the 2D engine, as well as selecting a number of
options.

Bits (3:0) set the command mode for the 2D drawing engine as shown in the table below. If bit(8) is set,
the command will be initiated as soon as the command register iswritten. If bit(8) is cleared, drawing
will be initiated by awrite to the launch area. For descriptions and examples of each command, see the
2D launch area section.

Command[3:0] Command

0 Nop - wait for idle

1 Screen to screen bt

2 Screen to screen stretch blt
3 Host to screen blt

4 Host to screen stretch bit
5 Rectangle fill

6 Line

7 Polyline

8 Polygon fill

13 Write Sgram Mode register
14 Write Sgram Mask  register
15 Write Sgram Color register

Setting Bit(9) makes line drawing reversible. If thisbit is set, drawing aline from point A to point B will
result in the same pixels being drawn as drawing a line from point B to point A.

Bits(11:10) control the value placed in dstXY after each blt or rectangle fill command is executed. If
bit(10) is 0, dst_x isunchanged. If bit(10) is1, dst_x getsdst_x + dst_width. If bit(11) isO, dst_y is
unchanged. If bit(11) is1, dst_y getsdst_y + dst_height.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 57 Updated 12/18/99



df ; Avenger High Performance Graphics Engine
3 )
A

Bit(12) controls whether lines are stippled or solid. If bit(12) is O, lineswill be asolid color. If bit(12) is
1, lines will either be made up of either atwo color pattern using color Fore and color Back or will be a
transparent stipple using color For e, as determined by the transparency bit - bit(16).

Bit(13) controls the format of the pattern data. 1f bit(13) is set to O, the pattern must be stored in the
destination format. If it isset to 1, the pattern will be stored as a monochrome bitmap; Pattern registers O
and 1 will be used as an 8x8x1bpp pattern, which will be expanded into the destination format using the
colorBack and colorFore registers. Note that if Bit(13) is set, and Bit(16) is set to indicate that
monochrome data is transparent, the pattern will be used to determine pixel transparency without regard
to the contents of the ROP register.

Bits(15:14) control the direction of blting during screen-to-screen copies. Note that the corner of the
source and destination rectangles passed in the srcXY and dstXY registers will change depending on the
blting direction. Bit(15) also controls the direction of blting for host-to-screen copies. This can be used to
flip a pixel map so that the top span in host memory is drawn as the bottom span on the screen. Note that
the direction bits only apply to “pure” screen to screen blits, but not to stretch blits. Also, destination and
source color keying, along with color conversions, cannot be used with right to left blits.

Bit(16) controls whether monochrome source bitmaps, and monochrome patterns will be transparent or
opaque. When bit(16) is 0, source bitmaps are opague; a 0 in the bitmap will result in color Back being
written to the destination. When bit(16) is 1, source bitmaps and monochrome patterns are transparent.
In this case, a0 in the bitmap will result in the corresponding destination pixel being left unchanged.

The X and Y pattern offsets give the coordinates within the pattern of the pixel which corresponds to the
destination pixel pointed to by the destination base address register. In other words, if a pattern fill is
performed which covers the origin, pixel (0,0) in the destination pixel map will be written with the color
in pattern pixel (x_pat_offset, y_pat_offset).

Bit(23) controls whether the clipO or clipl registers will be used for clipping. When bit(31) is O, clipping
values from clipOMin and clipOM ax will be used, when bit(31) is 1, clipping values from clip1lMin and
cliplMax will be used.

Bits(31:24) contain ROPO, the ternary ROP that is used when colorkeying is disabled. For more
information on ROPs, see the description of the rop register.

Command

Bit Description

3:0 Command

7.4 RESERVED

8 Initiate command (1=initiate command immediately, 0 = wait for launch write)

9 Reversible lines (1=reversible, O=non-reversible)

10 Increment destination x-start after blt or rectangle command (1=increment, O=don’t)
11 Increment destination y-start after blt or rectangle command (1=increment, O=don’t)
12 Stipple line mode (1 = stippled lines, 0 = solid lines)

13 Pattern Format (1 = monochrome, O = color)

14 X direction (0 = left to right, 1 = right to left)

15 Y direction (0 = top to bottom, 1 = bottom to top)

16 Transparent monochrome (1 = transparent, O = opaque)

19:17 X pattern offset

22:20 Y pattern offset

23 Clip select (O=clipO0 registers, 1 = clipl registers)

31:24 ROPO

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 58 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

7.2.3 commandExtra Register

This register contains miscellaneous control bitsin addition to those in the command register.
Bits(1:0) enable colorkeying, if the bit is 0, colorkeying is disabled. Enabling source colorkeying with
monochrome source, or in line, polyline, polygon, or rectangle modes has no effect. For further
explanation of these hits, see the description of the colorkey registers.

If bit(2) is set, the current command, and any following it will not proceed until the next vertical blanking
period begins. Wait for Vsync should not be used when performing non-DMA host blts.

If bit(3) is set, only row O of the pattern will be used, rather than the usual 8 pattern rows.

Command

Bit Description

0 Enable source colorkey (1=source colorkeying enabled, O=source colorkeying disabled)
1 Enable destination colorkey (1=enable dst colorkeying, O=disable dst colorkeying)

2 Wait for Vsync (1=wait for vsync, O=execute immediately)

3 Force pattern row 0 (1 = use only row 0, 0 = use al 8 pattern rows)

7.2.4 colorBack and color Fore Registers

The colorBack and color For e registers specify the foreground and background colors used in solid-fill
and monochrome bitmap operations, and operations using a monochrome pattern. The color registers
must be stored in the destination color format.

The following tables shows the format of the color registers for each destination format.

P = palette index

R = red color channel

G = green color channel
B = blue color channel

Dst Format Bits stored

8 bpp 0000_0000_0000_0000_0000_0000_PPPP_PPPP
15 bpp 0000_0000_0000_0000_ARRR RRGG GGGB_BBBB
16 bpp 0000_0000_0000_0000_RRRR RGGG _GGEGB_BBBB
24 bpp 0000_0000_RRRR RRRR_GGEG GGGG BBBB_BBBB
32 bpp AAAA AAAA RRRR_RRRR GGGG GGGG _BBBB_BBBB
colorFore

Bit Description

31:.0 foreground color

color Back

Bit Description

31:.0 background color

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 59 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

7.25 Pattern Registers

The pattern registers contain an 8 pixel by 8 pixel pattern. The pixels must be either in the color format
of the destination surface, or in 1bpp (monochrome) format. The pixels are to be written to the pattern
registersin packed format. So, only registers 0 and 1 will be used for monochrome patterns, registers 0
through 15 will be used when the destination is 8 bpp, registers 0 through 31 will be used when the
destination is 16 bpp.

Pixels should be written into the patter n registers starting with the upper left-hand corner of the pattern,
proceeding horizontally |eft to right, and then vertically top to bottom. The least-significant bits of
pattern[0] should always contain pixel(0,0) of a color pattern.

The table below give the bit position of monochrome pixels within the pattern registers. The bitsare
numbered such that bit(0) represents the Isb of aregister, and bit(31) represents the msb.

7.2.5.1 Order of pixel storage in the pattern registers for a monochrome
pattern

pattern(0)
Row 0 7 16 |54 |3 ]2 ]1]0
Row 1 15/14 (1312|111 |10]|9 |8
Row 2 2322|2120 19]|18 |17 |16
Row 3 3113029 |28|27]|126]|25|24
pattern(1)
Row 4 7 16 |54 |3 ]2 ]1]0
Row 5 15/14 (1312|111 |10]|9 |8
Row 6 2322|2120 19]|18 |17 |16
Row 7 3113029 |28|27]|126]|25|24

pattern(0-64)

Bit Description

31:0 pattern color data

7.2.6 srcBaseAddr and dstBaseAddr Registers

Bits(23:0) of these registers contain the addresses of the pixels at x=0, y=0 on the source and destination
surfaces in frame-buffer memory. Bit(31) of each register specifies whether the address pointsto tiled or
linear memory.

The srcBaseAddr register is used only for screen-to-screen blts. For host-blts, the alignment of the initial
pixel sent from the host is determined by the x entry in the srcXY register.

For YUY V422 and UY VY 422 surfaces, the base address must be dword aligned. Thus bits(1:0) of
srcBaseAddr must be O.

SrcBaseAddr
Bit | Description
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 60 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A,

23.0 Source base address

30:24 RESERVED

31 Source memory istiled
dstBaseAddr

Bit Description

23.0 Destination base address
30:24 RESERVED

31 Destination memory istiled

7.2.7 srcSizeand dstSize Registers

These registers are used only for blts and rectangle fills. They contain the height and width in pixels of
the source and destination rectangles. The srcSize register will only be used in Stretch-blt modes. For
non-stretched blts, the blt source size will be the same as the blt destination size, determined by the
dstSize register.

srcSize

Bit Description

12:0 Blt Source Width
15:13 RESERVED

28:16 Blt Source Height
31:29 RESERVED

dstSize

Bit Description

12:0 Blt Destination Width
15:13 RESERVED

28:16 Blt Destination Height
31:29 RESERVED

7.2.8 scXY and dstXY Registers

During screen-to-screen blts, the srcXY registers sets the position from which blt data will be read. Note
that the starting position for a blit depends on the direction of the blt as shown in the table below. For
lines and polylines, srcXY isthe starting point of the first line segment. For polygons, the srcXY should
be the topmost vertex of the polygon - that is, the vertex with the lowest y value. If there are multiple
vertices sharing the lowest y value, the srcXY should be set to the leftmost vertex with that y value.
Reading the srcXY register while in polygon mode will always return the last polygon vertex that the host
sent for the left side of the polygon.

The valuesin the srcXY are signed, however for blts sreXY must contain only positive values.

During host-to-screen blts, only the x entry of the srcXY register isused. This entry determines the
alignment of theinitial pixel in the blt within the first dword sent from the host. For monochrome
bitmaps, bitg[4:0] are used to determine the bit position within the dword of the initia pixel. For color
bitmaps, bits[1:0] are give the position within the dword of the first byte of pixel data. Host blts are
always performed left-to-right (the x-direction bit in the command register isignored), so the offset given
will always be that of the leftmost pixel in the first span. The alignment of the initial pixel of all spans

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 61 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

after thefirst is determined by adding the source stride (from the srcFormat register) to the alignment of
the previous span.

For blts, the dstXY should be the starting pixel of destination rectangle as shown in the table below. For
line and polyline modes, the dstXY will be the endpoint of the first line segment.

In polygon mode, the dstXY register is used to store the last vertex sent for the right side of the polygon.
If command[8] is set when the command register is written in polygon mode, the value from srcXY will
be copied to dstXY. If command[8] is cleared, dstXY can be written with the rightmost pixel in the top
span of the polygon.

Command[15:14] Starting X/Y

00 Upper Left-hand corner

01 Upper Right-hand corner

10 Lower Left-hand corner

11 Lower Right-hand corner

dstXY

Bit Description

12:0 Signed X position on the destination surface
15:14 RESERVED

28:16 Signed Y position on the destination surface
31:30 RESERVED

srcXY

Bit Description

12:0 Signed x position of the first source pixel
15:14 RESERVED

28:16 Signed y position of the first source pixel
31:30 RESERVED

7.2.9 srcFormat and dstFormat Registers
These register specify the format and strides of the source and destination surfaces

For linear surfaces, the stride of a pixel map is the number of bytes between the starting addresses of
adjacent scan lines. For these surfaces, the units of the stride is always bytes, regardless of the pixel
format.

For tiled surfaces, the stride is atile-stride. 1t's units are tiles, and only bits(6:0) are used.

The number of bits per pixel is determined as described by the tables below. The’32 bpp’ format contains
24 bits of RGB, along with a byte of unused data, the’ 24 bpp’ is packed 24 bit color.

Data coming through the host port can be byte swizzled to allow conversion between big and little endian
formats, as selected by Bit 19 and 20 of src Format register. If both byte and word swizzling are enabled,
the byte swizzling occurs first, followed by word swizzling.

The source packing bits control how the stride of the source will be determined during blts. If both bits
are zero, the stride is set by the stride entry. Otherwise, the stride is based off of the width of the blt being

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 62 Updated 12/18/99




Avenger High Performance Graphics Engine

3dfy

performed, as shown in the table below. The stride will equal the number of bytesin arow of the
rectangle being blted plus as many bytes as are required to get the necessary alignment. Packed source
and tiled surfaces are mutually exclusive - you cannot have packed source on atiled surface.

For YUYV422 and UY VY422 source formats, linear strides must always be a dword multiple. Thus,
bits(1:0) of the srcFormat register must be O.

When necessary, the blt engine will convert source pixels to the destination format.

When source pixelsin 15bpp or 16bpp format are converted to 24bpp or 32bpp, color conversion is
performed by replicating the msbs of each channel into the extra lsbs required. When pixels are
converted from 32bpp or 24bpp formats to 15 or 16bpp, 16bpp, the extra lsbs are removed from each
channel. When any non-32bpp format is converted to 32bpp, the 8msbs of each pixel (i.e. the apha
channel) are filled with zeros.

Destination pixel formats are stored as shown in the description of the color Fore and color Back registers.
RGB source formats match these, the other source formats are shown in the table below. For monochrome
source, p0 represents the leftmost pixel on the screen and p31 represents the rightmost. For YUV formats,
yarepresents the left pixel and yb represents the pixel to theright of ya, etc. Thus, ya7 isthe msb of they
channel for the left pixel and ya0 isthe Isb of the y channel for that pixel. In the diagram, the dword with
the lower address (which will be quadword aligned) is shown first, followed by the dword with the higher
address.

Sour ce formats

Monochrome

| p24 p25 p26 p27 p28 p29 p30 p31 pl6 pl7 pl18 pl9 p20 p21 p22 p23 p8 p9 P10 pll pl12 pl3 pl4 pl5 p0 pl p2 p3 p4 PS5 p6 p7 |

UYVY 4:2:2

| yb7 yb6 yb5 yb4 yb3 yb2 ybl yb0 v7 v6 v5 v4 v3 v2 v1 v0 ya7 yab yab yad ya3 ya? yal yal u7 u6 u5 u4 u3 u2 ul u0

YUYV 4:2:2

| V7 v6 v5v4 v3 v2 v1 v0 yb7 yb6 yb5 yb4 yb3 yb2 yb1 yb0 u7 u6 u5 u4 u3 u2 ul u0 ya7 yab yab yad ya3 ya? yal yad

Methods of color trandation used for Blts

lbpp src 8bpp src 15bpp src 16bpp src 24bpp src 32bpp src YUV
sc
8bpp dst | color direct or not supported | not supported | not not supported | not
registers palette supported supported
15bpp dst | color not direct Isb removal Isbremoval | Isb removal, YUV =>
registers supported alpha RGB
dropped
16bpp dst | color not msb direct Isbremoval | Isb removal, YUV =>
registers supported duplication alpha RGB
dropped
24bpp dst | color not msb msb direct direct, YUV =>
registers supported duplication duplication alpha RGB
dropped
32bpp dst | color not msb msb rgb direct, direct YUV =>
registers supported duplication, duplication, zero alpha RGB
zero alpha zero alpha zero alpha
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 63 Updated 12/18/99




Avenger High Performance Graphics Engine

3dfx

SrcFormat

Bit Description

13:0 Source Stride in bytes or tiles

15:14 RESERVED

19:16 Source color format: 1, 8, 16, 24, 32 bpp RGB, YUY V422, UYVY 422

20 Host port byte swizzle (1=enable)

21 Host port word swizzle (1=enable)

23:22 Source packing

31:24 RESERVED

dstFor mat

Bit Description

13:0 Destination Stride in bytes or tiles

15:14 RESERVED

18:16 Destination bits per pixel: 8, 15, 16, 24, or 32

31:19 RESERVED
srcFormat Sour ce Format dstFormat Destination
[19:16] [18:16] Bpp
0 1 bpp mono 1 8
1 8 bpp palettized 3 16
3 16 bpp RGB 4 24
4 24 bpp RGB 5 32
5 32 bpp RGB
8 packed 4:2:2 YUYV
9 packed 4:2:2 UYVY

srcFormat[23:22] Packing Stride calculation

0 Use stride register srcFormat[13:0]

1 Byte packed cell(src_width * src_bpp/8)

2 Word packed cell(src_width * src_bpp/16)* 2
3 Double-word packed | ceil(src_width * src_bpp/32)*4

7.2.10 clipOMin, clipOMax, clipIMin, and cliplMax Registers

The clip registers define the maximum and minimum x & y values of pixel that can be written in the
destination pixel map. There are two sets of clip registers, however, only one set is used at atime, as
determined by the clip select bit in the command register.

Clipping isinclusive of the minimum values, and exclusive of the maximum values. Thusif the clip
select bit is zero, only pixels with x values in the range [clipOMin_x, clipOMax_x) and y valuesin the
range [clipOMin_y, clipOMax_y) will be written.

clipOMin
Bit Description
11:0 X minimum clip when clip select is0

Revision 0.97
Updated 12/18/99

Copyright O 1996-1997 3Dfx Interactive, Inc.
Proprietary 64



3dfx

Avenger High Performance Graphics Engine

15:12 RESERVED

27:16 y minimum clip when clip select is0
31:28 RESERVED

clipOM ax

Bit Description

11:0 X maximum clip when clip select is0
15:12 RESERVED

27:16 y maximum clip when clip select is0
31:28 RESERVED

cliplMin

Bit Description

11:0 X minimum clip when clip select is 1
15:12 RESERVED

27:16 y minimum clip when clip select is 1
31:28 RESERVED

clip1lMax

Bit Description

11:0 X maximum clip when clip selectis 1
15:12 RESERVED

27:16 y maximum clip when clip selectis 1
31:28 RESERVED

7.2.11 colorkey Registers
These registers define the range of colors that will be transparent when color keying is enabled.

Different ROPs are selected for each pixel depending the result of that pixels colorkey test. A source pixel
passes the colorkey test if it iswithin the inclusive range defined by the srcColorkeyMin and
srcColorkeyM ax registers. A destination pixel passes the colorkey test if it iswithin the inclusive range
defined by the dstColorkeyMin and dstColorkeyM ax registers.

For Pixels with 8bpp formats, the color indices are compared directly. For pixelswith 16, 24, or 32bpp
formats, each color channel (R, G, and B) is compared separately, and each channel must pass for the
colorkey test to be passed. In the 32bpp format, the upper 8 bits are ignored during colorkey testing.
Source colorkeying cannot be enabled if the source format is 1 bpp.

If colorkeying is disabled for the source or destination surfaces, that colorkey test isfailed.

For further information on ROP selection by the colorkey test results, see the description of the ROP
register.

The colorkey test uses the following formula:
pass = (((color>=colorkey _min) && (color<=colorkey_max)) & & colorkey enable)

srcColorkeyMin

Bit Description

23.0 minimum color key value for source pixels

Revision 0.97
Updated 12/18/99

Copyright O 1996-1997 3Dfx Interactive, Inc.
Proprietary 65




3dfx

Avenger High Performance Graphics Engine

| 31:24 | RESERVED
srcColorkeyM ax
Bit Description
23.0 maximum color key value for source pixels
31:24 RESERVED

dstColorkeyMin

Bit Description

23.0 minimum color key value for destination pixels
31:24 RESERVED

dstColorkeyM ax

Bit Description

23.0 maximum color key value for destination pixels
31:24 RESERVED

7.2.12 rop Register

Thisisaset of ternary ROPs used to determine how the source, destination, and pattern pixels will be
combined. The default ROP, ROPO is stored in the command register. Which of the four ROPs will be
used is determined on a per-pixel basis, based on the results of the source and destination colorkey tests,
as shown in the following table:

Source Color | Destination Color | ROP
Key Test Key Test

Fail Fail ROP O
Fail Pass ROP 1
Pass Fail ROP 2
Pass Pass ROP 3
rop

Bit Description

7.0 ROP 1

15:8 ROP 2

23:16 ROP 3

7.2.13 lineStyleregister
The lineStyle register specifies how lines will be drawn.

The bit pattern used for line stippling can be set to repeat every 1-32 bits, as set by the bit-mask size part
of thisregister. The bit-mask size entry gives the number of bits * minus one* that will be used from the
lineStippleregister. Thus, if you want to use 2 bits to represent a dashed line, you would set the bit-mask

sizeto 1.

Each bit from the lineStipple register will determine the color or transparency of from 1-256 pixels. The
repeat count determines the number of pixels along the line that will be drawn (or skipped) for each bit in

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary

66 Updated 12/18/99




d f Avenger High Performance Graphics Engine
3 \ !
A

the line pattern register. The number of pixels associated with each bit of the line pattern * minus one*
must be written to the repeat count entry.

The start position give the offset within the line pattern register for the first pixel drawninaline. It
consists of an integer index of the current bit in the line pattern, and a fractional offset that will determine
the number of pixels that will be drawn using that bit of the pattern. The number of pixels drawn using
theinitial bit in the line pattern will equal the repeat count (i.e. the repeat count entry+1) minus the
fractional part of the start position. The bit positions within the lineStipple registers are numbered
starting with the Isb at 0, going up to the msb at 31.

Itisillegal to set the integer part of the stipple position to be greater than the bit-mask size. Itisillega to
set the fractional part to be greater than the repeat count. If either part of the stipple position istoo large,
the behavior of the line drawing engine is undefined.

Writing the lineStyle register will cause the stipple position to be loaded from the register. If the
lineStyle register is not written to between the execution of two line commands, the stipple position at the
start of the new line will be whatever if was after the completion of the last line. If the lineStyle register
isread while the 2D engineisidle, the stipple position read will aways be that which will be used in the
next line operation - thus, if the lineStyle register has been written since the last stippled line was drawn
the value written will be returned, otherwise the value that remained after the last stippled line will
returned. Reading the lineStyle register while the 2D engine is not idle will return an indeterminable
value for the stipple position.

In the following examples,. ‘X’ represents a pixel colored with colorFore, ‘0’ represents a pixel colored
with color Back or that istransparent. ‘S ’ Shows that the line engine is starting at bit O in the
lineStippleregister. * ' shows that the line engine is using a hew bit from the lineStipple register.

7.2.13.1 Example

Say the bit-mask sizeis set to 6 (thus, the entry in the register is 5) and the line patternis:
lineStipple <= 010111b

The pixel pattern that will be repeated is:

repeat_count repeating pixel pattern

1 XXX 0OX0SXXXO0X0

2 XX_XX_XX_00_XX_00_S XX_XX_XX_00_XX_00

3 XXX_XXX_XXX_000_XXX_000_S XXX_XXX_XXX_000_XXX_000

7.2.13.2 Example

Say the repeat count is 5 (the register entry is 4), the integer part of the start position is 7, and the
fractional part of the start position is2. The color of the first 3 pixels drawn for the line will be
determined by bit 7 in the line pattern register, the next 5 pixels will be determined by bit 8, and so on.

lineStyle <= 07020904h
lineStipple <= 1010110111b

pixels generated, where x=color For e and o=color Back:

XXX_00000_XXXXX_S XXXXX_XXXXX_XXXXX_00000_XXXXX_XXXXX_00000_ XXXXX_00000 XXXXX_S

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 67 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

7.2.13.3 Pseudo code for line pixel generation
Here is the pseudo-code for determining the color of pixels generated by the line engine:

<bit_position> = <start_position_integer>
<pixel_position> = <start_position_fraction>

while (<need_another_pixel>) {
if (<line_pattern> & (1 << <bhit_position>) ) {
<new_pixel_color> = <colorFore>
} else{
if (<transparent>) {
<new_pixel_color> = <transparent>
} else{
<new_pixel_color> = <colorBack>
}
}

if ( <pixel_position> == <repeat_count> ) {
<pixel_position> =0
if (<bit_position> == <bit_mask_size>) {
<hit_position> = 0;
} else{
<bit_position> = <bit_position> + 1

}
} else{
<pixel_position> = <pixel_position> +1
}
}
lineStyle
Bit Description
7:0 Repeat count
12:8 Stipple size
15:13 RESERVED
23:16 Start position - fractional part
28:24 Start position - integer part
31:29 RESERVED

7.2.14 lineStipple Register

The line bit-mask register contains a mask that determines how lines will be drawn. Bitsthat are ones
will be drawn with the color in the color For e register. Bits that are zeros will be filled with the color in
the color Back register, or will not be filled, depending on the ‘transparent’ bit in the command register.
The pattern in the bit mask can be set to repeat every 1-32 bits, as set by the bit-mask size part of the line
style register. If the bit-mask sizeis set to less than 31, some of the bits of the line bit-mask will not be
used, starting with the most-significant bit. For example, if the bit-mask sizeis set to 7, bits 0-7 of the
lineStipple register will contain the line bit-mask.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 68 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

lineStipple
Bit Description
31:0 Line bit-mask

7.2.15 bresenhamError registers

These registers allows the user to specify the initial Bresenham error terms used when performing line
drawing, polygon drawing, and stretch blts. The Bresenham error terms are signed values.

Bit 31 of each registers determines whether or not the error term given in the lower bits will be used. If
this bit is 0, the line and stretch blt engines will generate the initial error term automatically. If the bitis
set to 1, the error term given in bits 16-0 will be used. If abresenham error register is used, the register
should be written with bit[31] set to 0 after completion of the operation, so that subsequent operations will
not be affected.

bresError0 can be used to set the initial error value for lines, for the left edge of a polygon, and for blt
stretching along the y-axis.

bresError1 can be used to set the initial error value for the right edge of a polygon, and for blt stretching
along the x-axis.

bresError0

Bit Description

15:0 Signed Bresenham error term for stretch blt y, lines, and left polygon edges
30:17 RESERVED

31 Use the error term given in bits 16-0

bresErrorl

Bit Description

15:0 Signed Bresenham error term for stretch blt x and right polygon edges
30:17 RESERVED

31 Use the error term given in bits 16-0

7.3 Launch Area

7.3.1 Screen-to-screen Blt Mode

Writing the launch area while in screen-to-screen blt mode results in a rectangle being copied from one
area of display memory to another. The position of the source rectangle is given by the write to the launch
area. The writeto the launch area will be used to fill the srcXY register.

screenBltL aunch

Bit Description

12:0 X position of the source rectangle

15:13 RESERVED

28:16 Y position of the source rectangle

31:29 RESERVED

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 69 Updated 12/18/99




df ; Avenger High Performance Graphics Engine
3 )
A

7.3.2 Screen-to-screen Stretch Blt Mode

Writing the launch area while in screen-to-screen blt mode results in pixels being copied from rectanglein
display memory to another of a different size. The write to the launch area will be used to fill the srcXY
register. The x and y direction bits do not apply to stretch blits. 1.e., only top-down, left-to-right stretch
blits can be done.

stretchBItL aunch

Bit Description
12:0 X position of the source rectangle
15:13 RESERVED
28:16 Y position of the source rectangle
31:29 RESERVED

7.3.3 Host-to-screen Blt Mode

In host-to-screen blt mode, writes to the launch area should contain packed pixels to be used as source
data. When performing a host-to-screen blt, the blt engine does not generate source addresses. However,
itis gtill necessary for the driver to specify the srcFormat, in order for the blt engine to determine how
the source data is packed. The driver must also write the srcXY register in order to specify the first byte
or bit to use from the first dword. In monochrome source mode, the 5 Isbs will specify theinitial bit. In all
other modes, the 2 Isbs of srcXY will specify the initial byte of the initial span. The alignment of the first
pixel of each span after the first is determined by adding the source stride (from the srcFor mat register)
to the alignment of the previous span.

If more data is written to the launch area than is required for the host blt specified, the extra data will be
discarded, or may be used in the following host blt, if it is requested while the 2D is operating on the first
hblt. If too little data is written to the launch area, the hblt will be aborted, and pixels on an incomplete
span at the end of the host blt may or may not be drawn.

7.3.3.1 Host Blt Example 1

In this example, the driver is drawing text to a 1024x768x16bpp screen using monochrome bitmaps of
various widths. The monochrome data is packed, with each row byte aligned. Firgt, it setsup the
necessary registers before giving the data specific to the first blt:

color Back <= the background color

color For e <= the foreground color

dstXY <= the starting position of the first character
dstBaseAddr <= base address of the primary surface

clipOMin <= 0x00000000

clipOM ax <= OxFFFFFFFF

command <= SRC_COPY ||[HOST_BLT_MODE = 0xCC000003
dstFormat <= 0x00030800

srcFormat <= 0x00400000

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 70 Updated 12/18/99




d f Avenger High Performance Graphics Engine
3 \ !
A

The command mode is set to host-to-screen blt, with all other features disabled. Since colorkeying is
disabled, only ROPO is needed. The format register sets the host format to unswizzled monochrome,
using byte-packing. This means that the stride will not have to be set for each blt, but will be set to the
number of bytes required to store the number of pixelsin the source width (Since thisis not a stretch blt,
the source width equal s the destination width, as set later in the dstSize register). The clip registers are
set such that the results will not be clipped. Although thisis a host to screen blt, the srcXY register must
be set in order to specify the initial alignment of the bitmask. For this example, the source data begins
with the Isb of the first dword of host data, so the srcXY register is set to zero.

Now, the driver is ready to start the first bit. It will blt a 11x7 pixel character.
dstSize <= 0x0007000B
srcXY <= 0x00000000
launch <= 0xc0608020
launch <= 0xC460C060
launch <= 0x3B806ECO
launch <= 0x00001100

7.3.3.2 Host Blt Example 2
In this example, the driver is drawing a pixel map

color Back <= the background color

color For e <= the foreground color

dstXY <= the starting position of the first character

clipOMin <= 0x00000000

clipOM ax <= OxFFFFFFFF

command <= SRC_COPY ||[HOST_BLT_MODE = 0xCC000003
srcFormat <= 0x00240000

The command mode is set to host-to-screen blt, with all other features disabled. Since colorkeying is
disabled, only ROPO is needed. The format register sets the host format to unswizzled monochrome,
using byte-packing. This means that the stride will not have to be set for each blt, but will be set to the
number of bytes required to store the number of pixelsin the source width (Since thisis not a stretch blt,
the source width equal s the destination width, as set later in the dstSize register). The clip registers are
set such that the results will not be clipped. Although thisis ahost to screen blt, the srcXY register must
be set in order to specify the initial alignment of the bitmask. For this example, the source data begins
with the Isb of the first dword of host data, so the srcXY register is set to zero.

Now, the driver is ready to start the first bit. It will blt a 11x7 pixel character.
dstXY <= 0x0007000B
srcXY <= 0x00000000
launch <= 1% 2 rows
launch <= 2" 2 rows

launch <= 3" 2 rows

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 71 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

launch <= |ast row

hostBltL aunch

Bit Description

31:0 Source pixel data

7.3.4 Host-to-screen Stretch Blt Mode

Writing the launch area while in host-to-screen blt mode results in the pixels written to the launch area
being stretched onto the destination rectangle. Pixel datafor Host-to-screen stretch bltsis written just as
for non-stretched host-to-screen blts, except when the destination height differs from the source height. In
this case, the host must replicate or decimate the source spans to match the number of destinations spans
required.

hostStretchL aunch
Bit Description
31:.0 Source pixel data

7.3.5 Rectangle Fill Mode

Rectangle fill mode is similar to screen-to-screen blt mode, but in this mode, the color Fore register is
used as source data rather than data from display memory. The size of the rectangle is determined by the
dstSize register. The write to the launch area gives the position of the destination rectangle, which is
used to fill the dstXY register.

rectFillLaunch

Bit Description
12:0 X position of the destination rectangle
15:13 RESERVED
28:16 Y position of the destination rectangle
31:29 RESERVED

7.3.6 LineMode

Writing the launch area while in line mode will write the launch data to the dstXY register and draw a
line from srcXY to dstXY. After theline has been drawn, dstXY iscopied to srcXY. Inline mode, all
pixelsin the line will be drawn (as specified by the line style register), including both the start and
endpoint.

The ROP used for lines can use the pattern and the destination, but not source data. color Fore will be
used in the ROP in place of source data. Source colorkeying must be turned off, destination colorkeying is
allowed.

7.3.6.1 Line drawing example

sreXY <= 0x00020003 /l'line start-point = (3, 2)

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 72 Updated 12/18/99




df Avenger High Performance Graphics Engine
3 )
4.

lineStipple <= 0x00000006 /1 bit mask is 110 binary

lineStyle <= 0x02010202 /I start position = 2 1/3, repeat count = 2, bit-mask size=2
colorBack <= BLACK

colorFore <= GREY

command <= LINE_MODE || OPAQUE

launch <= 0x000c0016 /l'line end-point = (22,12)

The line drawn will appear as shown below:

Origin
Figure 1

linel aunch

Bit Description

12:0 X position of the line endpoint

15:13 RESERVED

28:16 Y position of the line endpoint

31:29 RESERVED

7.3.7 Polyline Mode

Writing the launch area while in line mode will write the launch data to the dstXY register and draw a
line from srcXY to dstXY. After theline has been drawn, dstXY iscopied to srcXY. In polyline mode,
the endpoint of the line (the pixel at dstXY) will not be written. This ensures that each pixel in a nhon-
overlapping polyline will be written only once.

The ROP used for lines can use the pattern and the destination, but not source data. color Fore will be
used in the ROP in place of source data. Source colorkeying must be turned off, destination colorkeying is
allowed.

polylinel aunch

Bit Description
12:0 X position of the line endpoint
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 73 Updated 12/18/99



d f Avenger High Performance Graphics Engine
3 \ !
A

15:13 RESERVED
28:16 Y position of the line endpoint
31:29 RESERVED

7.3.8 Polygon Fill Mode

The polygon fill mode can be used to draw simple polygons. A polygon may be drawn using the method
described below if no horizontal span intersects more than two non-horizontal polygon edges. Polygons
are drawn by first determining the top vertex - that is the vertex with the lowest y coordinate. The
coordinates of this vertex should be written to the srcXY register. 1f multiple vertices share the lowest y
coordinate, any vertex with the lowest y coordinate may be used as the starting point. 1f command[8] is
set when the command register is written when command[3:0] indicates polygon mode, the value in the
sreXY register will be copied to the dstXY register. The valuein the srcXY register determines the
starting point for the left side of the polygon, while the value in the dstXY register determines the starting
point for the right side of the polygon. If bit[8] of the command register is not set, the starting position of
the right side of the polygon can be set by writing to the dstXY register.

Once the starting vertex is set, as well as the desired colors, ROP, pattern, and options for the polygon fill,
the polygon can be drawn by writing polygon vertices to the launch area. When multiple vertices share
the lowest y coordinate, the starting vertex chosen will determine which of those vertices are on the ‘right’
edge of the polygon and which are on the ‘left’ edge. Pixels with the samey value as the starting point
are on the left edge if they are to the left of the starting point.

For optimum performance, software should determine the leftmost and rightmost of all vertices that share
the lowest y coordinate. The coordinates of the leftmost vertex should be written to srcXY and the
coordinates of the rightmost vertex should be written to dstXY. When the command register is written,
command[8] (the ‘start command’ bit) should be low.

In Polygon fill mode, polygon vertices should be written to the launch areain order of increasing y value.
Whenever 2 vertices share the same y value, the leftmost vertex * must* be written first. The driver should
keep track of the last y value sent for the left and right sides. If they value for the last vertex sent for the
left sideis*less than or equal to* the last y value sent for the right side, the next vertex on the left side
should be written to the launch area. Otherwise, the next vertex for the right side should be written to the
launch area.

The ROP used for filling polygons can use the pattern and the destination, but not source data. colorFore
will be used in the ROP in place of source data. Source colorkeying must be turned off, destination
colorkeying is allowed.

Pixels that are on the line that forms the left edge of the polygon will be drawn. Pixelsthat fall on theline
that forms the right edge of the polygon will not be drawn. For Horizontal edges, pixels on a horizontal
polygon edge that is on the ‘top’ of the polygon (i.e. above the edge is outside the polygon and below the
edge is inside the polygon) will be drawn, while pixels on a horizontal polygon edge that is on the bottom
of the polygon will not be drawn.

7.3.8.1 Polygon drawing example

As an example of polygon drawing, say we are drawing the polygon shown in figure 2. Traversing the
vertex list in counterclockwise order gives the following list of vertices:

4,1) (2,4 (3,6) (1,6) (28 (511) (88) (13,8) (11,6) (11,3) (10,2)

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 74 Updated 12/18/99




df ; Avenger High Performance Graphics Engine
3 )
A,

Figures 2a through 2m show the steps in drawing the polygon. Filled circles are vertices of the left
polygon edge. Open circles are vertices of the right polygon edge. Pixels that are drawn at the end of
each step are shaded in the figures.

The polygon engine keeps track of four vertices at atime. The top vertex of the current left polygon edge
(LO), the bottom vertex of the current left polygon edge (L1), the top vertex of the current right polygon
edge (R0O), and the bottom vertex of the current right polygon edge (R1). The values of these variables at
each step in drawing the polygon are shown in the figures. The arrows in the figures indicate when a
variable changes between the start of the step and the end of pixel filling for that step.

Figure 2

First, all required registers must be written, including the dstFormat register to specify the drawing
surface, color or pattern registers, and the command register. Write the coordinates of the starting vertex
(4, 1) to the srcXY register:

srcXY <= 0x00010004
command <= POLYGON_MODE || INITIATE_COMMAND

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 75 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

LO ® RO
L1 R1

Figure 2a

R1.y>=L 1.y, so we have to write the next vertex for the left edge (2, 4):
launch <= 0x00040002

LO ° RO
R1

L1

Figure 2b

R1.y<L1y, so we write the next vertex for the right edge (10, 2). The drawing engine now has edges for
both the left and right edges. So, it will draw all spans up to min(R1.y, L1.y). Because R1.y=R0.y, no
pixels will be drawn, but RO will be updated to vertex R1:

launch <= 0x0001000a

LO RO
o

OV

R1

L1

Figure 2c

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 76 Updated 12/18/99




Avenger High Performance Graphics Engine

R1.y<L1.y, so we again write the next vertex on the right polygon edge (11, 3). Pixelson all spans from
max(L 0.y, RO.y) to min(L1.y, R1.y)-1 will be drawn, as shown below. Because R1.y<L1.y, RO isupdated
to R1.

launch <= 0x0003000b

LO RO

@ O
N
RO

ORl

L1

Figure 2d

R1.y<L1y, so we write the next vertex on the right edge (11, 6). Again, pixels on all spans from
max(L 0.y, RO.y) to min(L1.y, R1.y)-1 will be drawn. Thistime R1.y>L 1.y, however, so LO is updated to
L1

launch <= 0x0006000b

LO
RO
LO
L1

R1

Figure 2e

R1.y>=L 1.y, so we write the next vertex on the left edge (3, 6). L1.y=R1.y, so RO isupdated to R1 and LO
isupdated to L 1.

launch <= 0x00060003

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 77 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

o O
O RO
LO
\ @
LO ° O RO
L1 R1
Figure 2f

R1.y>=L 1.y, so we write the next vertex on the left edge (1, 6). L1.y=R1.y, so RO isupdated to R1 and LO
isupdated to L1. R1 did not change, so updating RO to R1 has no effect.

launch <= 0x00060001

LO<.—L0 ° RO
L1 R1

Figure 2g

R1.y>=L 1.y, so we again write the next vertex on the left edge (2, 8). L1.y>R1.y, so RO isupdated to R1,
again with no effect.

launch <= 0x00080002

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 78 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

LO RO
R1

L1

Figure 2h

R1.y<L1y, so we write the next vertex on the right edge (11, 8). L1.y=R1.y, so RO is updated to R1, and
LOisupdated to L1.

launch <= 0x0008000b

o O
O
o
LO ° ° O RO
LO ° O RO
L1 R1
Figure 2i
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 79 Updated 12/18/99



Avenger High Performance Graphics Engine

R1.y>=L 1.y, so we write the next vertex on the left edge (5, 11). L1.y>R1.y, so RO isupdated to R1.
launch <= 0x000b0005

LO RO
R1

L1

Figure 2j

R1.y<L1.y, so we write the next vertex on the right edge (8, 8). L1.y>R1.y, so RO is updated to R1, but no
pixels are drawn.

launch <= 0x00080008

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 80 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

@ O
O
@
® ® O
LO ° O RO« 3 RO
R1
L1 ®
Figure 2k

R1.y<L1.y, so we write the next vertex on the right edge. Thisisthe final vertex in the polygon, which
doesn’'t have a horizontal span at the bottom, so this vertex is the same as the last vertex for the left edge
(5,11). L1y=R1y, so RO isupdated to R1, and LO isupdated to L1. No pixels on the fina span are
drawn (thiswould be true even if L1.x did not equal R1.x). If the launch area is written again before any
registers are written the polygon engine will begin a new polygon starting at (5,11).

launch <= 0x000b0005

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 81 Updated 12/18/99



df Avenger High Performance Graphics Engine
3 )
4.

@ O
O
@
® ® O
LO RO
LO ® RO
L1 R1
Figure 2m
polygonL aunch
Bit Description
12:0 X position of a polygon vertex
15:13 RESERVED
28:16 Y position of a polygon vertex
31:29 RESERVED

7.4 Miscellaneous 2D

7.4.1 Write Sgram Mode Register

Executing this command causes the value in srcBaseAddr[10:0] to be set as the sgram mode register viaa
special bus cycle in the memory controller.

SGRAM mode register

Bit Description

2.0 burst length

3 burst type (O=sequential, 1=interleave)

6:4 CAS latency

87 test mode

9 write burst length (O=burst, 1=single bit).

10 sgram-defined.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 82 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

7.4.2 Write Sgram Color Register

Executing this command causes the value in srcBaseAddr[31:0] to be set as the sgram color register viaa
special bus cycle in the memory controller. Since H3 has a 128-bit wide bus, the register is replicated
across the four sets of sgram memories.

7.4.3 Write Sgram Mask Register

Executing this command causes the value in srcBaseAddr[31:0] to be set as the sgram mask register viaa
special bus cycle in the memory controller. Since H3 has a 128-bit wide bus, the register is replicated
across the four sets of sgram memories.

8. 3D Memory Mapped Reqgister Set
A 4Mbyte (22-bit) FBI memory mapped register address is divided into the following fields:

AltM ap Swizzle | Wrap Chip Register | Byte
1 1 6 4 8 2

The chip field selects one or more of the Avenger chips (FBI and/or TREX) to be accessed. Each bitin
the chip field selects one chip for writing, with FBI controlled by the Isb of the chip field, and TREX#2
controlled by the msb of the chip field. Note the chip field value of 0x0 selects al chips. The following
table shows the chip field mappings. The current generation of Avenger only supports 1 TREX, so only
bits 1:0 are valid, future generation of Avenger will support additional TREX cores.

Chip Field SST-1 Chip Accessed
0000 FBI + al TREX chips
0001 FBI
0010 TREX #0
0011 FBI + TREX #0
0100 TREX #1
0101 FBI + TREX #1
0110 TREX #0 + TREX #1
0111 FBl + TREX #0 + TREX #1
1000 TREX #2
1001 FBI + TREX #2
1010 TREX #0 + TREX #2
1011 FBl + TREX #0 + TREX #2
1100 TREX #1 + TREX #2
1101 FBIl + TREX #1 + TREX #2
1110 TREX #0 + TREX #1 + TREX #2
1111 FBI + al TREX chips

Note that TREX #0 is always connected to FBI in the system level diagrams of section 3, and TREX #1is
attached to TREX #0, etc. By utilizing the different chip fields, software can precisely control the data
presented to individual chips which compose the Avenger graphics subsystem. Note that for reads, the

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 83 Updated 12/18/99



Avenger High Performance Graphics Engine

3dfy

chip field isignored, and read data is always read from FBI. Theregister field selects the register to be

accessed from the table below. All accesses to the memory mapped registers must be 32-bit accesses. No
byte (8-bit) or halfword (16-bit) accesses are alowed to the memory mapped registers, so the byte (2-bit)

field of all memory mapped register accesses must be 0x0. As aresult, to modify individual bits of a 32-

bit register, the entire 32-bit word must be written with valid bitsin all positions.

The table below shows the Avenger register set. The register set shown below is the address map when
triangle registers address aliasing (remapping) is disabled(fbiinit3(0)=0). When The chip column
illustrates which registers are stored in which chips. For the registers which are stored in TREX, the %
symbol specifies that the register is unconditionally written to TREX regardless of the chip address.
Similarly, the* symbol specifies that the register is only written to a given TREX if specified in the chip
address. The R/W column illustrates the read/write status of individual registers. Reading from a register
which is“write only” returns undefined data. Also, reading from aregister that is TREX specific returns
undefined data.. Reads from all other memory mapped registers only contain valid data in the bits stored

by the registers, and undefined/reserved bits in a given register must be masked by software. The sync
column indicates whether the graphics processor must wait for the current command to finish before
loading a particular register from the FIFO. A *“yes’ in the sync column means the graphics processor
will flush the data pipeline before loading the register -- thiswill result in a small performance
degradation when compared to those registers which do not need synchronization. The FIFO column
indicates whether a write to a particular register will be pushed into the PCI bus FIFO. Care must be
taken when writing to those registers not pushed into the FIFO in order to prevent race conditions between
FIFOed and non-FIFOed registers. Also note that reads are not pushed into the PCI bus FIFO, and
reading FIFOed registers will return the current value of the register, irrespective of pending writes to the
register present in the FIFO.

Memory Base O:

Offset 0x0200000

Register Name Address Reg | Bits Chip R/ Sync? Description

Num W /Fifo?
status 0x000(0) 0x0 31:0 | FBI R No/n/a Avenger Status
intrCtrl 0x004(4) Ox1 31:0 | FBI R/W | No/No Interrupt Status and Control
vertexAx 0x008(8) 0x2 15:0 | FBI+TREX”™ | W No/Yes Vertex A x-coordinate location (12.4 format)
vertexAy 0x00c(12) 0x3 15:0 | FBI+TREX”™ | W No/Yes Vertex A y-coordinate location (12.4 format)
vertexBx 0x010(16) 0x4 15:0 | FBI+TREX”™ | W No/Yes Vertex B x-coordinate location (12.4 format)
vertexBy 0x014(20) 0x5 15:0 | FBI+TREX”™ | W No/Yes Vertex B y-coordinate location (12.4 format)
vertexCx 0x018(24) 0x6 15:0 | FBI+TREX”™ | W No/Yes Vertex C x-coordinate location (12.4 format)
vertexCy 0x01c(28) 0x7 15:0 | FBI+TREX” | W No/Yes Vertex C y-coordinate location (12.4 format)
startR 0x020(32) 0x8 23:0 | FBI W No/Yes Starting Red parameter (12.12 format)
startG 0x024(36) 0x9 23:0 | FBI W No/Yes Starting Green parameter (12.12 format)
startB 0x028(40) OxA 23:0 | FBI W No/Yes Starting Blue parameter (12.12 format)
startZ 0x02c(44) 0xB 31:0 | FBI W No/Yes Starting Z parameter (20.12 format)
startA 0x030(48) 0xC 23:0 | FBI W No/Yes Starting Alpha parameter (12.12 format)
startS 0x034(52) 0xD 310 | TREX W No/Yes Starting W parameter (14.18 format)
startT 0x038(56) OxE 31:0 | TREX W No/Yes Starting T/W parameter (14.18 format)
startwW 0x03c(60) OxF 31:0 | FBI+TREX | W No/Yes Starting /W parameter (2.30 format)
dRdX 0x040(64) 0x10 23:0 | FBI W No/Yes Change in Red with respect to X (12.12 format)
dGdX 0x044(68) Ox11 23:0 | FBI W No/Yes Change in Green with respect to X (12.12 format)
dBdX 0x048(72) 0x12 23:0 | FBI W No/Yes Change in Blue with respect to X (12.12 format)
dzdX 0x04c(76) 0x13 31:0 | FBI W No/Yes Change in Z with respect to X (20.12 format)
dAdX 0x050(80) 0x14 23:0 | FBI W No/Yes Change in Alpha with respect to X (12.12 format)
dsdx 0x054(84) 0x15 31:0 | TREX W No/Yes Change in W with respect to X (14.18 format)
dTdXx 0x058(88) 0x16 31:0 | TREX W No/Yes Changein T/W with respect to X (14.18 format)
dwdx 0x05¢(92) 0x17 31:0 | FBI+TREX | W No/Yes Change in /W with respect to X (2.30 format)
dRdY 0x060(96) 0x18 23:0 | FBI W No/Yes Change in Red with respect to Y (12.12 format)
dGdy 0x064(100) 0x19 23:0 | FBI W No/Yes Change in Green with respect to Y (12.12 format)

Copyright O 1996-1997 3Dfx Interactive, Inc.

Proprietary

Revision 0.97
Updated 12/18/99




Avenger High Performance Graphics Engine

dBdY 0x068(104) Ox1A | 23:0 | FBI W No/Yes Change in Blue with respect to Y (12.12 format)
dzdy 0x06¢(108) 0x1B | 31:.0 | FBI W No/Yes Changein Z with respect to Y (20.12 format)
dAdY 0x070(112) 0x1C | 23:0 | FBI W No/Yes Change in Alphawith respect to Y (12.12 format)
dsdy 0x074(116) 0x1D | 31:.0 | TREX' W No/Yes Changein SW with respect to Y (14.18 format)
drdy 0x078(120) O0x1E | 31:.0 | TREX W No/Yes Changein T/W with respect to Y (14.18 format)
dwdy 0x07c(124) O0x1F | 31:.0 | FBI+TREX | W No/Yes Change in /W with respect to Y (2.30 format)
triangleCMD 0x080(128) 0x20 31 FBI+TREX”™ [ W No/Yes Execute TRIANGLE command (floating point)
reserved 0x084(132) 0x21 n/a n/a W n/a
fvertexAx 0x088(136) 0x22 31:0 | FBI+TREX” [ W No/Yes Vertex A x-coordinate location (floating point)
fvertexAy 0x08c(140) 0x23 31:0 | FBI+TREX” [ W No/Yes Vertex A y-coordinate location (floating point)
fvertexBx 0x090(144) 0x24 | 31:0 | FBI+TREX” [ W No/Yes Vertex B x-coordinate location (floating point)
fvertexBy 0x094(148) 0x25 31:0 | FBI+TREX” [ W No/Yes Vertex B y-coordinate location (floating point)
fvertexCx 0x098(152) 0x26 31:0 | FBI+TREX” [ W No/Yes Vertex C x-coordinate location (floating point)
fvertexCy 0x09c(156) 0x27 31:0 | FBI+TREX” [ W No/Yes Vertex C y-coordinate location (floating point)
fstartR 0x0a0(160) 0x28 31:0 | FBI W No/Yes Starting Red parameter (floating point)
fstartG 0x0a4(164) 0x29 31:0 | FBI W No/Yes Starting Green parameter (floating point)
fstartB 0x0a8(168) Ox2A | 31:0 | FBI W No/Yes Starting Blue parameter (floating point)
fstartZ 0x0ac(172) 0x2B | 31:0 | FBI W No/Yes Starting Z parameter (floating point)
fstartA 0x0b0(176) 0x2C | 31:0 | FBI W No/Yes Starting Alpha parameter (floating point)
fstartS 0x0b4(180) 0x2D | 31:.0 | TREX' W No/Yes Starting S/W parameter (floating point)
fstartT 0x0b8(184) 0x2E | 31:.0 | TREX' W No/Yes Starting T/W parameter (floating point)
fstartW 0x0bc(188) 0x2F | 31:.0 | FBI+TREX | W No/Yes Starting /W parameter (floating point)
fdRdX 0x0c0(192) 0x30 31:0 | FBI W No/Yes Change in Red with respect to X (floating point)
fdGdX 0x0c4(196) 0x31 31:0 | FBI W No/Yes Change in Green with respect to X (floating point)
fdBdX 0x0c8(200) 0x32 31:0 | FBI W No/Yes Change in Blue with respect to X (floating point)
fdzdX 0x0cc(204) 0x33 31:0 | FBI W No/Yes Change in Z with respect to X (floating point)
fdAdX 0x0d0(208) 0x34 | 31:.0 | FBI W No/Yes Change in Alphawith respect to X (floating point)
fdSdX 0x0d4(212) 0x35 310 | TREX W No/Yes Change in S/W with respect to X (floating point)
fdTdX 0x0d8(216) 0x36 31:0 | TREX W No/Yes Change in T/W with respect to X (floating point)
fdwdx 0x0dc(220) 0x37 31:0 | FBI+TREX | W No/Yes Change in /W with respect to X (floating point)
fdRdY 0x0e0(224) 0x38 31:0 | FBI W No/Yes Change in Red with respect to Y (floating point)
fdGdY 0x0e4(228) 0x39 31:0 | FBI W No/Yes Change in Green with respect to Y (floating point)
fdBdY 0x0e8(232) Ox3A | 31:0 | FBI W No/Yes Change in Blue with respect to Y (floating point)
fdzdYy 0x0ec(236) 0x3B | 31:.0 | FBI W No/Yes Changein Z with respect to Y (floating point)
fdAdY 0x0f0(240) 0x3C | 31:0 | FBI W No/Yes Change in Alphawith respect to Y (floating point)
fdsdy 0x0f4(244) 0x3D | 31:.0 | TREX' W No/Yes Change in S/W with respect to Y (floating point)
fdTdY 0x0f8(248) 0x3E | 31:.0 | TREX' W No/Yes Changein T/W with respect to Y (floating point)
fdwdy 0x0fc(252) 0x3F | 31:.0 | FBI+TREX | W No/Yes Change in /W with respect to Y (floating point)
ftriangleCMD 0x100(256) 0x40 31 FBI+TREX”™ [ W No/Yes Execute TRIANGLE command (floating point)
fbzColorPath 0x104(260) 0x4l | 27.0 | FBI+TREX” | R'W | No/Yes FBI Color Path Control
fogMode 0x108(264) 0x42 5:0 FBI R/W | No/Yes Fog Mode Control
aphaMode 0x10c(268) 0x43 31:0 | FBI R/W | No/Yes Alpha Mode Control
fbzMode 0x110(272) 0x44 20:0 | FBI R/W | Yes/Yes RGB Buffer and Depth-Buffer Control
IfbMode 0x114(276) 0x45 16:0 | FBI R/W | Yes/Yes Linear Frame Buffer Mode Control
clipLeftRight 0x118(280) 0x46 31:0 | FBI R/W | Yes/Yes Left and Right of Clipping Register
clipTopBottom 0x11c(284) 0x47 31:0 | FBI R/W | Yes/Yes Top and Bottom of Clipping Register
nopCMD 0x120(288) 0x48 | 0 FBI+TREX” | W YesYes Execute NOP command
fastfillCMD 0x124(292) 0x49 | na FBI w Yes'Yes Execute FASTFILL command
swapbufferCMD 0x128(296) O0x4A | 8.0 FBI w Yes'Yes Execute SWAPBUFFER command
fogColor 0x12c(300) 0x4B | 23:0 | FBI W Yes/ Yes Fog Color Value
zaColor 0x130(304) 0x4C | 31:0 | FBI W Yes/ Yes Constant Alpha/Depth Value
chromaKey 0x134(308) 0x4D | 23:0 | FBI W Yes/ Yes ChromaKey Compare Value
chromaRange 0x138(312) Ox4E | 27:0 | FBI W Yes/Yes Chroma Range Compare Values, Modes & Enable
userIntrCMD 0x13c(316) Ox4F | 9:.0 FBI w Yes/Yes Execute USERINTERRUPT command
stipple 0x140(320) 0x50 31:0 | FBI R/W | Yes/Yes Rendering Stipple Vaue
color0 0x144(324) 0x51 31:0 | FBI R/W | Yes/Yes Constant Color #0
colorl 0x148(328) 0x52 31:0 | FBI R/W | Yes/Yes Constant Color #1
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 85 Updated 12/18/99




Avenger High Performance Graphics Engine

\J
L\

fbiPixelsin 0x14¢(332) 0x53 23:.0 | FBI

R n/a Pixel Counter (Number pixels processed)
fbi ChromaFail 0x150(336) 0x54 23:0 | FBI R n/a Pixel Counter (Number pixels failed Chromatest)
fbiZfuncFail 0x154(340) 0x55 23:0 | FBI R n/a Pixel Counter (Number pixelsfailed Z test)
fbiAfuncFall 0x158(344) 0x56 23:0 | FBI R n/a Pixel Counter (Number pixelsfailed Alphatest)
fbi Pixel sOut 0x15c(348) 0x57 23:0 | FBI R n/a Pixel Counter (Number pixels drawn)
fogTable 0x160(352) 0x58 | 31:.0 | FBI w Yes/ Yes Fog Table

to to

0x1dc(476) 0x77
reserved 0x1e0(480) 0x78 na

to to

0x1e8(488) OX7A
colBufferAddr Ox1ec(492) 0x7B | 23:0 | FBI R/W | Yes/Yes Color Buffer Base Address
colBufferStride 0x1f0(496) 0x7C | 15:0 | FBI R/W | Yes/Yes Color Buffer Stride, Memory type
auxBufferAddr 0x1f4(500) 0x7D | 23:0 | FBI R/W | Yes/Yes Auxiliary Buffer Base Address
auxBufferStride 0x1f8(504) Ox7E | 15:0 | FBI R/W | Yes/Yes Auxiliary Buffer Stride, Memory type
reserved 0x1fc(508) OX7F n/a n/a n/a na
clipLeftRightl 0x200(512) 0x80 31:0 | FBI R/W | Yes/Yes Secondary Left/Right Clipping Register
clipTopBottom1 0x204(516) 0x81 31:0 | FBI R/W | Yes/Yes Secondary Top/Bottom Clipping Register
reserved 0x208(520) 0x82 na na na na

to to

0x24b(587) 0x92
swapPending 0x24c(588) 0x93 na FBI W No/No Swap buffer pending
|eftOverlayBuf 0x250(592) 0x94 | 31.0 | FBI w No/Yes Left Overlay address
rightOverlayBuf 0x254(596) 0x95 31:0 | FBI W No/Yes Right Overlay address
fbi SwapHistory 0x258(600) 0x96 31:0 | FBI R n/a Swap History Register
fbiTrianglesOut 0x25c(604) 0x97 23:0 | FBI R n/a Triangle Counter (Number triangles drawn)
sSetupMode 0x260(608) 0x98 19:0 | FBI W No/Yes Triangle setup mode
sVx 0x264(612) 0x99 | 31.0 | FBI+TMU* w No/Yes Triangle setup X
sVy 0x268(616) O0x9A | 31.0 | FBI+TMU* w No/Yes Triangle setup Y
SARGB 0x26¢(620) 0x9B | 31.0 | FBI+TMU* W No/Yes Triangle setup Alpha, Red, Green, Blue
sRed 0x270(624) 0x9C | 31.0 | FBI w No/Yes Triangle setup Red value
sGreen 0x274(628) 0x9D | 31:0 | FBI W No/Yes Triangle setup Green value
sBlue 0x278(632) Ox9E | 31:0 | FBI W No/Yes Triangle setup Blue value
sAlpha 0x27c(636) Ox9F | 31:0 | FBI W No/Yes Triangle setup Alphavalue
sVz 0x280(640) O0xAO | 31:.0 | FBI w No/Yes Triangle setup Z
sWhb 0x284(644) O0xAl | 31.0 | FBI+TMU* w No/Yes Triangle setup Global W
SWtmu0 0x288(648) 0xA2 | 31:.0 | TMU* w No/Yes Triangle setup Tmu0 & Tmul W
sS/'WO0 0x28¢c(652) 0xA3 | 31.0 | TMU* w No/Yes Triangle setup Tmu0 & Tmul SW
sT/WO0 0x290(656) 0xA4 | 31:.0 | TMU* w No/Yes Triangle setup Tmu0 & Tmul T/W
sWitmul 0x294(660) OxA5 | 31.0 | TMU1 W No/Yes Triangle setup Tmul only W
sSYWtmul 0x298(664) OxA6 | 31.0 | TMU1 W No/Yes Triangle setup Tmul only SW
sT/Wtmul 0x29c(668) OxA7 | 31.0 | TMU1 W No/Yes Triangle setup Tmul only T/W
sDrawTriCMD 0x2a0(672) OxA8 | 31.0 | FBI+TMU* W No/Yes Triangle setup (Draw)
sBeginTriCMD 0x2a4(676) OxA9 | 31:.0 | FBI W No/Yes Triangle setup Start New triangle
reserved 0x2a8(680) OxAA | n/a na na na

to to

0x2fc(764) O0xBF
textureMode 0x300(768) 0xCO | 30:0 | TREX' W No/Yes Texture Mode Control
tLOD 0x304(772) 0xCl | 23:.0 | TREX w No/Yes Texture LOD Settings
tDetail 0x308(776) 0xC2 | 21.0 | TREX w No/Yes Texture Detail Settings
texBaseAddr 0x30c(780) 0xC3 | 31:.0 | TREX' W No/Yes Texture Base Address
texBaseAddr 1 0x310(784) 0xC4 | 23:0 | TREX' W No/Yes Texture Base Address (supplemental LOD 1)
texBaseAddr 2 0x314(788) 0xC5 | 23:0 | TREX' W No/Yes Texture Base Address (supplemental LOD 2)
texBaseAddr_3 8 0x318(792) 0xC6 | 23:0 | TREX' W No/Yes Texture Base Address (supplemental LOD 3-8)
texStride 0x31c(796) 0xC7
trexInitl 0x320(800) 0xC8 | 31:.0 | TREX' W Yes/ Yes TREX Hardware Initialization (register 1

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 86 Updated 12/18/99



Avenger High Performance Graphics Engine

nccTable 0x324(804) 0xC9 | 31:.0 | TREX’ W Yes/Yes Narrow Channel Compression Table 0 (12 entries)
to to or
0x350(848) 0xD4 | 26:.0

nccTablel 0x354(852) 0xD5 | 31:.0 | TREX' W Yes/Yes Narrow Channel Compression Table 1 (12 entries)
to tp or
0x380(896) OxEO | 26:0

reserved 0x384(900) OxEl | n/a na na na
to to
0x3fc(1020) | OXFF

The triangle parameter registers are aliased to a different address mapping to improve PCI bus
throughput. The upper bit of the wrap field in the pci addressis Ox1 (pci_ad[21]=1), the following table
shows the addresses for the triangle parameter registers.

Register Name Address Reg | Bits Chip R/ Sync? Description
Num W /Fifo?

status 0x000(0) 0x0 31:0 | FBI R/W [ No/Yes SST-1 Status
intrCtrl 0x004(4) Ox1 19:0 | FBI R/W | No/No Interrupt Status and Control
vertexAx 0x008(8) 0x2 15:0 | FBI+TREX” [ W No/Yes Vertex A x-coordinate location (12.4 format)
vertexAy 0x00c(12) 0x3 15:0 | FBI+TREX” [ W No/Yes Vertex A y-coordinate location (12.4 format)
vertexBx 0x010(16) 0x4 15:0 | FBI+TREX” [ W No/Yes Vertex B x-coordinate location (12.4 format)
vertexBy 0x014(20) 0x5 15:0 | FBI+TREX” [ W No/Yes Vertex B y-coordinate location (12.4 format)
vertexCx 0x018(24) 0x6 15:0 | FBI+TREX” [ W No/Yes Vertex C x-coordinate location (12.4 format)
vertexCy 0x01c(28) 0x7 15:0 | FBI+TREX” [ W No/Yes Vertex C y-coordinate location (12.4 format)
startR 0x020(32) 0x8 23:0 | FBI W No/Yes Starting Red parameter (12.12 format)
dRdX 0x024(36) 0x9 23:0 | FBI W No/Yes Change in Red with respect to X (12.12 format)
dRdY 0x028(40) OxA 23:0 | FBI W No/Yes Change in Red with respect to Y (12.12 format)
startG 0x02c(44) 0xB 23:0 | FBI W No/Yes Starting Green parameter (12.12 format)
dGdX 0x030(48) 0xC 23:0 | FBI W No/Yes Change in Green with respect to X (12.12 format)
dGdy 0x034(52) 0xD 23:0 | FBI W No/Yes Change in Green with respect to Y (12.12 format)
startB 0x038(56) OxE 23:0 | FBI W No/Yes Starting Blue parameter (12.12 format)
dBdX 0x03c(60) OxF 23:0 | FBI W No/Yes Change in Blue with respect to X (12.12 format)
dBdY 0x040(64) 0x10 23:0 | FBI W No/Yes Change in Blue with respect to Y (12.12 format)
startZ 0x044(68) Ox11 31:0 | FBI W No/Yes Starting Z parameter (20.12 format)
dzdX 0x048(72) 0x12 31:0 | FBI W No/Yes Change in Z with respect to X (20.12 format)
dzdy 0x04c(76) 0x13 31:0 | FBI W No/Yes Change in Z with respect to Y (12.12 format)
startA 0x050(80) 0x14 23:0 | FBI W No/Yes Starting Alpha parameter (12.12 format)
dAdX 0x054(84) 0x15 23:0 | FBI W No/Yes Change in Alphawith respect to X (12.12 format)
dAdY 0x058(88) 0x16 23:0 | FBI W No/Yes Change in Alphawith respect to Y (12.12 format)
startS 0x05¢(92) 0x17 31:0 | TREX W No/Yes Starting W parameter (14.18 format)
dsdx 0x060(96) 0x18 31:0 | TREX W No/Yes Change in W with respect to X (14.18 format)
dsdy 0x064(100) 0x19 31:0 | TREX W No/Yes Change in SW with respect to Y (14.18 format)
startT 0x068(104) 0x1A | 31:0 | TREX W No/Yes Starting T/W parameter (14.18 format)
dTdXx 0x06¢(108) 0x1B | 31:0 | TREX W No/Yes Changein T/W with respect to X (14.18 format)
drdy 0x070(112) 0x1C | 31:0 | TREX W No/Yes Changein T/W with respect to Y (14.18 format)
startwW 0x074(116) 0x1D | 31:0 | FBI+TREX | W No/Yes Starting /W parameter (2.30 format)
dwdx 0x078(120) O0x1E | 31:0 | FBI+TREX | W No/Yes Change in /W with respect to X (2.30 format)
dwdy 0x07c(124) Ox1F 31:0 | FBI+TREX | W No/Yes Change in /W with respect to Y (2.30 format)
triangleCMD 0x080(128) 0x20 31 FBI+TREX” | W No/Yes Execute TRIANGLE command (sign bit)
reserved 0x084(132) 0x21 n/a n/a W n/a
fvertexAx 0x088(136) 0x22 31:0 | FBI+TREX” [ W No/Yes Vertex A x-coordinate location (floating point)
fvertexAy 0x08c(140) 0x23 31:0 | FBI+TREX” [ W No/Yes Vertex A y-coordinate location (floating point)
fvertexBx 0x090(144) 0x24 31:0 | FBI+TREX” [ W No/Yes Vertex B x-coordinate location (floating point)
fvertexBy 0x094(148) 0x25 31:0 | FBI+TREX” [ W No/Yes Vertex B y-coordinate location (floating point)
fvertexCx 0x098(152) 0x26 31:0 | FBI+TREX” [ W No/Yes Vertex C x-coordinate location (floating point)
fvertexCy 0x09c(156) 0x27 31:0 | FBI+TREX” [ W No/Yes Vertex C y-coordinate location (floating point)
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 87 Updated 12/18/99




Avenger High Performance Graphics Engine

fstartR 0x0a0(160) 0x28 31:0 | FBI W No/Yes Starting Red parameter (floating point)

fdRdX 0x0a4(164) 0x29 31:0 | FBI W No/Yes Change in Red with respect to X (floating point)
fdRdY 0x0a8(168) Ox2A | 31:0 | FBI W No/Yes Change in Red with respect to Y (floating point)
fstartG 0x0ac(172) 0x2B | 31:0 | FBI W No/Yes Starting Green parameter (floating point)

fdGdX 0x0b0(176) 0x2C | 31:0 | FBI W No/Yes Change in Green with respect to X (floating point)
fdGdY 0x0b4(180) 0x2D | 31:0 | FBI W No/Yes Change in Green with respect to Y (floating point)
fstartB 0x0b8(184) Ox2E | 31:0 | FBI W No/Yes Starting Blue parameter (floating point)

fdBdX 0x0bc(188) Ox2F 31:0 | FBI W No/Yes Change in Blue with respect to X (floating point)
fdBdY 0x0c0(192) 0x30 31:0 | FBI W No/Yes Change in Blue with respect to Y (floating point)
fstartZ 0x0c4(196) 0x31 31:0 | FBI W No/Yes Starting Z parameter (floating point)

fdzdX 0x0c8(200) 0x32 31:0 | FBI W No/Yes Change in Z with respect to X (floating point)
fdzdY 0x0cc(204) 0x33 31:0 | FBI W No/Yes Changein Z with respect to Y (floating point)
fstartA 0x0d0(208) 0x34 31:0 | FBI W No/Yes Starting Alpha parameter (floating point)

fdAdX 0x0d4(212) 0x35 31:0 | FBI W No/Yes Change in Alphawith respect to X (floating point)
fdAdY 0x0d8(216) 0x36 31:0 | FBI W No/Yes Change in Alphawith respect to Y (floating point)
fstartS 0x0dc(220) 0x37 31:0 | TREX W No/Yes Starting S/W parameter (floating point)

fdSdX 0x0e0(224) 0x38 31:0 | TREX W No/Yes Change in S/W with respect to X (floating point)
fdsdy 0x0e4(228) 0x39 31:0 | TREX W No/Yes Change in S/W with respect to Y (floating point)
fstartT 0x0e8(232) 0x3A | 31:0 | TREX W No/Yes Starting T/W parameter (floating point)

fdTdX 0x0ec(236) 0x3B | 31:0 | TREX W No/Yes Change in T/W with respect to X (floating point)
fdTdY 0x0f0(240) 0x3C | 31:0 | TREX W No/Yes Changein T/W with respect to Y (floating point)
fstartW 0x0f4(244) 0x3D | 31:0 | FBI+TREX | W No/Yes Starting /W parameter (floating point)

fdwdx 0x0f8(248) O0x3E | 31:0 | FBI+TREX | W No/Yes Change in /W with respect to X (floating point)
fdwdy 0x0fc(252) Ox3F 310 | FBI+TREX | W No/Yes Change in /W with respect to Y (floating point)
ftriangleCMD 0x100(256) 0x40 31 FBI+TREX” | W No/Yes Execute TRIANGLE command (floating point)

Copyright O 1996-1997 3Dfx Interactive, Inc.

Proprietary

88

Revision 0.97
Updated 12/18/99




df ; Avenger High Performance Graphics Engine
3 )
A

8.1 statusRegister

The status register provides away for the CPU to interrogate the graphics processor about its current state
and FIFO availability. The status register isread only, but writing to status clears any Avenger generated
PCI interrupts.

Bit Description

5:0 PCI FIFO freespace (Ox3f=FIFO empty). Default is Ox3f.

6 Vertical retrace (0=Vertical retrace active, 1=Vertical retrace inactive). Default is 1.
7 FBI graphics engine busy (O=engine idle, 1=engine busy). Default isO.
8 TREX busy (O=engineidle, 1=engine busy). Default isO.

9 Avenger busy (O=idle, 1=busy). Default isO.

10 2D busy (O=idle, 1=busy). Default isO.

11 Reserved

27:12 reserved

30:28 Swap Buffers Pending. Default is 0x0.

31 PCI Interrupt Generated. Default is 0x0. (not currently implemented).

Bits(5:0) show the number of entries available in the internal host FIFO. The internal host FIFO is 64
entries deep. The FIFO is empty when bits(5:0)=0x3f. Bit(6) is the state of the monitor vertical retrace
signal, and is used to determine when the monitor is being refreshed. Bit(7) of statusis used to determine
if the graphics engine of FBI isactive. Note that bit(7) only determinesif the graphics engine of FBI is
busy -- it does not include information as to the status of the internal PCI FIFOs. Bit(8) of statusis used
to determine if TREX isbusy. Note that bit(8) of statusis set if any unit in TREX isnot idle -- this
includes the graphics engine and all internal TREX FIFOs. Bit(9) of status determinesif all unitsin the
Avenger system (including graphics engines, FIFOs, etc.) areidle. Bit(9) is set when any internal unit in
Avenger is active (e.g. graphicsis being rendered or any FIFO is not empty). When the Memory FIFO is
enabled, bits(27:12) show the number of entries available in the Memory FIFO. Depending upon the
amount of frame buffer memory available, a maximum of 65,536 entries may be stored in the Memory
FIFO. The Memory FIFO is empty when bits(27:12)=0xffff. Bits (30:28) of status track the number of
outstanding SWAPBUFFER commands. When a SWAPBUFFER command is received from the host
cpu, bits (30:28) are incremented -- when a SWAPBUFFER command compl etes, bits (30:28) are
decremented. Bit(31) of statusis used to monitor the status of the PCI interrupt signal. If Avenger
generates a vertical retrace interrupt (as defined in pcil nterrupt), bit(31) is set and the PCI interrupt
signal lineis activated to generate a hardware interrupt. An interrupt is cleared by writing to status with
“dont-care” data. NOTE THAT BIT(31) ISCURRENTLY NOT IMPLEMENTED IN HARDWARE, AND WILL ALWAYS
RETURN OXO.

8.2 intrCtrl Register

TheintrCtrl register controls the interrupt capabilities of Avenger. Bits 1:0 enable video horizontal sync
signal generation of interrupts. Generated horizontal sync interrupts are detected by the CPU by reading
bits 7:6 of intr Ctrl. Bits 3:2 enable video vertical sync signal generation of interrupts. Generated vertical
sync interrupts are detected by the CPU by reading bits 9:8 of intr Ctrl. Bit 4 of intrCtr| enables
generation of interrupts when the frontend PCI FIFO isfull. Generated PCI FIFO Full interrupts are
detected by the CPU by reading bit 10 of intr Ctrl. PCI FIFO full interrupts are genered when intr Ctr| bit
4 is set and the number of free entries in the frontend PCI FIFO drops below the value specified in
fbilnitO bits(10:6). Bit 5 of intr Ctrl enables the user interrupt command USERINTERRUPT generation
of interrupts. Generated user interrupts are detected by the CPU by reading bit 11 of intr Ctrl. Thetag
associated with a generated user interrupt is stored in bits 19:12 of intr Ctrl.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 89 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

Generated interrupts are cleared by writing a 0 to the bit signaling a particular interrupt was generated
and writing a1 to inter Ctrl bit(31). For example, a PCI FIFO full generated interrupt is cleared by
writing a0 to bit 10 of intr Ctrl, and a generated user interrupt is cleared by writing a 0 to bit 11 of
intrCtrl. For both cases, bit 31 of intr Ctrl must be written with the value 1 to clear the external PCI
interrupt. Care must be taken when clearing interrupts not to accidentally overwrite the interrupt mask
bits (bits 5:0) of intr Ctrl) which enable generation of particular interrupts.

Note that writes to the intr Ctrl register are not pushed on the PCI frontend FIFO, so writesto intr Ctrl
are processed immediately. SinceintrCtrl is not FIFO' ed, writes to intr Ctrl may be processed out-of-
order with respect to other queued writes in the PCI and memory-backed FIFOs.

Bit Description

0 Horizontal Sync (rising edge) interrupts enable (1=enable). Default isO.

1 Horizontal Sync (falling edge) interrupts enable (1=enable). Default isO.

2 Vertical Sync (rising edge) interrupts enable (1=enable). Default isO.

3 Vertical Sync (falling edge) interrupts enable (1=enable). Default isO.

4 PCI FIFO Full interrupts enable (1=enable). Default isO.

5 User Interrupt Command interrupts enable (1=enable). Default isO.

6 Horizontal Sync (rising edge) interrupt generated (1=interrupt generated).

7 Horizontal Sync (falling edge) interrupt generated (1=interrupt generated).

8 Vertical Sync (rising edge) interrupt generated (1=interrupt generated).

9 Vertical Sync (falling edge) interrupt generated (1=interrupt generated).

10 PCI FIFO Full interrupt generated (1=interrupt generated).

11 User Interrupt Command interrupt generated (1=interrupt generated).

19:12 User Interrupt Command Tag. Read only.

20 Hole counting interupts enable (1=enable). Default isO.

21 VMI interrupts enable. (1=enable). Default isO.

22 Hole counting interrupt generated (1=interrupt generated).

23 VMI interrupt generated (1=interrupt generated).

29:24 reserved

30 VGA Interrupt generated (1=interrupt generated).

31 External pin pci_intavalue, active low (0=PCI interrupt is active, 1=PCl interrupt is
inactive)

8.3 vertex and fvertex Registers

The vertexAx, vertexAy, vertexBx, vertexBy, vertexCx, vertexCy, fvertexAx, fvertexAy, fvertexBx,
fvertexBy, fvertexCx, and fvertexCy registers specify the x and y coordinates of atriangle to be
rendered. There are three verticesin an Avenger triangle, with the AB and BC edges defining the minor
edge and the AC edge defining the major edge. The diagram below illustrates two typical triangles:

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 90 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

(vertexAx, vertexAy) (vertexAx, vertexAy)

Minor Edge Minor Edge

(vertexBX, (vertexBX, Major Edge

vertexBy) vertexBy)

Minor Edge Minor Edge

(vertexCx, vertexCy) (vertexCx, vertexCy)

The fvertex registers are floating point equivalents of the vertex registers. Avenger automatically
converts both the fvertex and vertex registersinto an internal fixed point notation used for rendering.

vertexAx, vertexAy, vertexBx, vertexBy, vertexCx, vertexCy

Bit Description

15:0 Vertex coordinate information (fixed point two’s complement 12.4 format)

fvertexAx, fvertexAy, fvertexBx, fvertexBy, fvertexCx, fvertexCy

Bit Description

31:.0 Vertex coordinate information (IEEE 32-bit single-precision floating point format)

8.4 startR, startG, startB, startA, fstartR, fstartG, fstartB, and fstartA Registers

The startR, startG, startB, startA, fstartR, fstartG, fstartB, and fstartA registers specify the starting
color information (red, green, blue, and alpha) of atriangle to be rendered. The start registers must
contain the color values associated with the A vertex of thetriangle. The fstart registers are floating
point equivalents of the start registers. Avenger automatically converts both the start and fstart registers
into an internal fixed point notation used for rendering.

startR, startG, startB, startA
Bit Description

23.0 Starting Vertex-A Color information (fixed point two’s complement 12.12 format)

fstartR, fstartG, fstartB, fstartA

Bit Description
310 Starting Vertex-A Color information (IEEE 32-bit single-precision floating point
format)

8.5 startZ and fstartZ registers

The startZ and fstartZ registers specify the starting Z information of atriangle to be rendered. The
startZ registers must contain the Z values associated with the A vertex of the triangle. ThefstartZ
register is afloating point equivalent of the startZ registers. Avenger automatically converts both the
startZ and fstartZ registersinto an internal fixed point notation used for rendering.

startZ
Bit | Description |
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 91 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )

| 31:0 | Starting Vertex-A Z information (fixed point two's complement 20.12 format)
fstartZ
Bit Description
31:.0 Starting Vertex-A Z information (IEEE 32-bit single-precision floating point format)

8.6 startS, startT, fstartS, and fstartT Registers

The startS, startT, fstartS, and fstartT registers specify the starting S'W and T/W texture coordinate
information of atriangle to be rendered. The start registers must contain the texture coordinates
associated with the A vertex of the triangle. Note that the Sand T coordinates used by Avenger for
rendering must be divided by W prior to being sent to Avenger (i.e. Avenger iterates S'W and T/W prior
to perspective correction). During rendering, the iterated Sand T coordinates are (optionally) divided by
the iterated W parameter to perform perspective correction. The fstart registers are floating point
equivalents of the start registers. Avenger automatically converts both the start and fstart registersinto
an internal fixed point notation used for rendering.

startS, startT
Bit Description
31:.0 Starting Vertex-A Texture coordinates (fixed point two’s complement 14.18 format)

fstartS, fstartT

Bit Description
310 Starting Vertex-A Texture coordinates (IEEE 32-bit single-precision floating point
format)

8.7 startW and fstartW registers

The startW and fstartW registers specify the starting /W information of atriangle to be rendered. The
startW registers must contain the W values associated with the A vertex of the triangle. Note that the W
value used by Avenger for rendering is actually the reciprocal of the 3D-geometry-calculated W value (i.e.
Avenger iterates 1/W prior to perspective correction). During rendering, the iterated Sand T coordinates
are (optionally) divided by the iterated W parameter to perform perspective correction. The fstartW
register is afloating point equivalent of the startW registers. Avenger automatically converts both the
startW and fstartW registersinto an internal fixed point notation used for rendering.

startw

Bit Description

31:.0 Starting Vertex-A W information (fixed point two’s complement 2.30 format)
fstartw

Bit Description

31:.0 Starting Vertex-A W information (IEEE 32-bit single-precision floating point format)

8.8 dRdX, dGdX, dBdX, dAdX, fdRdX, fdGdX, fdBdX, and fdAdX Registers

The dRdX, dGdX, dBdX, dAdX, fdRdX, fdGdX, fdBdX, and fdAdX registers specify the changein the
color information (red, green, blue, and alpha) with respect to X of atriangle to be rendered. Asa
triangle is rendered, the d?dX registers are added to the the internal color component registers when the
pixel drawn moves from left-to-right, and are subtracted from the internal color component registers when
the pixel drawn moves from right-to-left. The fd?dX registers are floating point equivalents of the d?dX

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 92 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

registers. Avenger automatically converts both the d?dX and fd?dX registersinto an internal fixed point
notation used for rendering.

dRdX, dGdX, dBdX, dAdX

Bit Description

23.0 Change in color with respect to X (fixed point two’s complement 12.12 format)

fdRdX, fdGdX, fdBdX, fdAdX

Bit Description

31:.0 Change in color with respect to X (IEEE 32-bit single-precision floating point format)

8.9 dZdX and fdZdX Registers

The dZdX and fdZdX registers specify the change in Z with respect to X of atriangle to be rendered. As
atriangle isrendered, the dZdX register is added to the the internal Z register when the pixel drawn
moves from left-to-right, and is subtracted from the internal Z register when the pixel drawn moves from
right-to-left. ThefdZdX registers are floating point equivalents of the dZdX registers. Avenger
automatically converts both the dZdX and fdZdX registers into an internal fixed point notation used for
rendering.

dzdX

Bit Description

31:0 Changein Z with respect to X (fixed point two’'s complement 20.12 format)
fdzdX

Bit Description

31:0 Changein Z with respect to X (IEEE 32-bit single-precision floating point format)

8.10 dSdX, dTdX, fdSdX, and fdTdX Registers

The dXdX, dTdX, fdSdX, and fdTdX registers specify the change in the S'W and T/W texture
coordinates with respect to X of atriangle to be rendered. Asatriangleisrendered, the d?dX registers
are added to the the internal S and T registers when the pixel drawn moves from left-to-right, and are
subtracted from the internal S/'W and T/W registers when the pixel drawn moves from right-to-left. Note
that the delta S/'W and T/W values used by Avenger for rendering must be divided by W prior to being
sent to Avenger (i.e. Avenger uses DS/'W and DT/W ). The d?dX registers are floating point equivalents
of thefd?dX registers. Avenger automatically converts both the d?dX and fd?dX registersinto an
internal fixed point notation used for rendering.

dSdX, dTdX

Bit Description

31:.0 Changein Sand T with respect to X (fixed point two’s complement 14.18 format)
fdsSdX, fdTdX

Bit Description

31:.0 Changein Z with respect to X (IEEE 32-bit single-precision floating point format)

8.11 dwdX and fdWdX Registers

The dWdX and fdWdX registers specify the change in /W with respect to X of atriangle to be rendered.
Asatriangleis rendered, the dWdX register is added to the the internal 1/W register when the pixel
drawn moves from left-to-right, and is subtracted from the internal 1/W register when the pixel drawn

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 93 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

moves from right-to-left. The fdWdX registers are floating point equivalents of the dWdX registers.
Avenger automatically converts both the dWdX and fdWdX registersinto an internal fixed point notation
used for rendering.

dwdx

Bit Description

31:.0 Changein W with respect to X (fixed point two’s complement 2.30 format)
fdwdX

Bit Description

310 Change in W with respect to X (IEEE 32-bit single-precision floating point format)

8.12 dRdY, dGdY, dBdY, dAdY, fdRdY, fdGdY, fdBdY, and fdAdY Registers

ThedRdY, dGdY, dBdY, dAdY, fdRdY, fdGdY, fdBdY, and fdAdY registers specify the changein
the color information (red, green, blue, and alpha) with respect to Y of atriangle to be rendered. Asa
triangle is rendered, the d?dY registers are added to the the internal color component registers when the
pixel drawn in apositive Y direction, and are subtracted from the internal color component registers when
the pixel drawn movesin anegative Y direction. The fd?dY registers are floating point equivalents of the
d?dY registers. Avenger automatically converts both the d?dY and fd?dY registersinto an internal fixed
point notation used for rendering.

dRdY, dGdY, dBdY, dAdY

Bit Description

23.0 Changein color with respect to Y (fixed point two’s complement 12.12 format)

fdRdY, fdGdY, fdBdY, fdAdY

Bit Description

31:.0 Change in color with respect to Y (IEEE 32-bit single-precision floating point format)

8.13 dZdY and fdZdY Registers

ThedzdY and fdZdY registers specify the change in Z with respect to Y of atriangle to be rendered. As
atriangle isrendered, the dZdY register is added to the the internal Z register when the pixel drawn
movesin apositive Y direction, and is subtracted from the internal Z register when the pixel drawn moves
inanegative Y direction. The fdZdY registers are floating point equivalents of the dZdY registers.
Avenger automatically converts both the dZdY and fdZdY registersinto an internal fixed point notation
used for rendering.

dzdy

Bit Description

31:.0 Changein Z with respect to Y (fixed point two’'s complement 20.12 format)
fdzdY

Bit Description

31:.0 Changein Z with respect to Y (IEEE 32-bit single-precision floating point format)

8.14 dsdY, dTdY, fdsdY, and fdTdY Registers

ThedYdY, dTdY, fdSdY, and fdTdY registers specify the change in the S/\W and T/W texture
coordinates with respect to Y of atriangle to be rendered. Asatriangle isrendered, the d?dY registers
are added to the the internal S/'W and T/W registers when the pixel drawn movesin apositive Y direction,

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 94 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

and are subtracted from the internal S'W and T/W registers when the pixel drawn movesin a negative Y
direction. Note that the delta S'W and T/W values used by Avenger for rendering must be divided by W
prior to being sent to Avenger (i.e. Avenger uses DS/'W and DT/W ). Thed?dY registers are floating
point equivalents of the fd?dY registers. Avenger automatically converts both the d?dY and fd2dY
registersinto an internal fixed point notation used for rendering.

dsdy, dTdY

Bit Description

31:.0 Changein Sand T with respect to Y (fixed point two's complement 14.18 format)
fdsdy, fdTdY

Bit Description

310 Changein Z with respect to Y (IEEE 32-bit single-precision floating point format)

8.15 dwdY and fdwdY Registers

The dWdY and fdWdY registers specify the change in /W with respect to Y of atriangle to be rendered.
Asatriangleis rendered, the dWdY register is added to the the internal 1/W register when the pixel
drawn movesin apositive Y direction, and is subtracted from the internal 1/W register when the pixel
drawn movesin anegative Y direction. ThefdWdY registers are floating point equivalents of the dwdY
registers. Avenger automatically converts both the dWdY and fdWdY registersinto an internal fixed
point notation used for rendering.

dwdy

Bit Description

31:0 Changein W with respect to Y (fixed point two’s complement 2.30 format)
fdwdy

Bit Description

31:.0 Change in W with respect to Y (IEEE 32-bit single-precision floating point format)

8.16 triangleCMD and ftriangleCMD Registers

ThetriangleCM D and ftriangleCM D registers execute the triangle drawing command. Writesto
triangleCMD or ftriangleCM D initiate rendering a triangle defined by the vertex, start, d?dX, and
d?dY registers. Note that the vertex, start, d?dX, and d?dY registers must be setup prior to writing to
triangleCMD or ftriangleCMD. The value stored to triangleCM D or ftriangleCMD is the area of the
triangle being rendered -- this value determines whether atriangle is clockwise or counter-clockwise
geometrically. If bit(31)=0, then the triangle is oriented in a counter-clockwise orientation (i.e. positive
area). If bit(31)=1, then the triangle is oriented in a clockwise orientation (i.e. negative area). To
calculate the area of atriangle, the following steps are performed:

1. Thevertices (A, B, and C) are sorted by the Y coordinate in order of increasing Y (i.e. Ay <=
By <=Cly)
2. Theareaiscaculated as follows:
AREA = ((dxAB * dyBC) - (dxBC * dyAB)) /2
where
dxAB = A.x - B.X
dyBC=By-Cy
dxBC=B.x-Cx
dyAB=A.y-By

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 95 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

Note that Avenger only requires the sign bit of the areato be stored in the triangleCM D and
ftriangleCM D registers -- bits(30:0) written to triangleCM D and ftriangleCM D are ignored.

triangleCMD

Bit Description

31 Sign of the area of the triangle to be rendered

ftriangleCM D

Bit Description

31 Sign of the area of the triangle to be rendered (IEEE 32-bit single-precision floating
point format)

8.17 nopCMD Register

Writing any data to the nopCM D register executes the NOP command. Executing a NOP command
flushes the graphics pipeline. When anopCMD is exectuted with Bit(0)==1, the following counters get
cleared: fbiPixelsIn, fbiChromaFail, fbiZfuncFail, fbiAfuncFail, and fbiPixelsOut registers. When a
nopCMD is executed with Bit(1)==1, fbiTrianglesOut is cleared. When anopCMD is executed with non
of its bits set, none of the aforementioned counters will be modified.

Bit Description

0 Clear fbiPixelsln, fbiChromaFail, fbiZfuncFail, fbiAfuncFail, and fbiPixelsOut
registers (1=clear registers)

1 Clear fbiTrianglesOut (1 = clear register).

8.18 fastfillCMD Register

Writing any data to the fastfill register executes the FASTFILL command. The FASTFILL command is
used to clear the RGB and depth buffers as quickly as possible. Prior to executing the FASTFILL
command, the clipL eftRight and clipLowY HighY are loaded with arectangular area which is the
desired areato be cleared. Note that clip registers define arectangular area which isinclusive of the
clipLeft and clipLowY register values, but exclusive of the clipRight and clipHighY register values.
The fastfillCM D register is then written to initiate the FASTFILL command after the clip registers have
been loaded. FASTFILL will optionally clear the color buffers with the RGB color specified in the color 1
register, and also optionally clears the depth buffer with the depth value taken from the zaColor register.
Note that since color 1 is a 24-bit value, either dithering or bit truncation must be used to translate the 24-
bit value into the native 16-bit frame buffer -- dithering may be employed optionally as defined by bit(8) of
fbzMode. Disabling clearing of the color or depth buffers is accomplished by modifying the rgb/depth
mask bits(10:9) in fbzMode. This allows individual or combined clearing of the RGB and depth buffers.

When using SGRAM, fastfillCM D[0] overrides fbzM ode[8], and forces dithering off, allowing the color
plane to be filled using SGRAM blockwrites. When using SDRAM, dithering behavior is determined
solely by fbzM ode[8].

Special Notes: Avenger's fastfillCMD is not fully functional with SDRAM. The aux-plane fill
portion of the comand doesn’t work. To fastfill a surface with SDRAM, point the colBufAddr and
colBufStride registers to the surface, and then fill it, using only the color-portion of the fastfill command
(i.e. set the RGB mask=1 (fbzM od€[9], but clear the za-mask (fbzmode[10])).

Bit Description
0 Disable dithering during fastfill (1 = disable dithering).
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 96 Updated 12/18/99




df ; Avenger High Performance Graphics Engine
3 )
A

8.19 swapbuffer CMD Register

Writing to the swapbuffer CM D register executes the SWAPBUFFER command. If the data written to
swapbuffer CM D bit(0)=0, then the frame buffer swapping is not synchronized with vertical retrace. If
frame buffer swapping is not synchronized with vertical retrace, then visible frame “tearing” may occur.
If swapbuffer CMD bit(0)=1 then the frame buffer swapping is synchronized with vertical retrace.
Synchronizing frame buffer swapping with vertical retrace eliminates the aforementioned frame “tearing.”
When a swapbuffer CM D is received in the front-end PCI host FIFO, the swap buffers pending field in
the status register isincremented. Conversely, when an actual frame buffer swapping occurs, the swap
buffers pending field in the status register (bits(30:28)) is decremented. The swap buffers pending field
allows software to determine how many SWAPBUFFER commands are present in the Avenger FIFOs.
Bits(8:1) of swapbuffer CM D are used to specify the number of vertical retraces to wait before swapping
the color buffers. An internal counter isincremented whenever a vertical retrace occurs, and the color
buffers are not swapped until the internal vertical retrace counter is greater than the value of

swapbuffer CMD bits(8:1) -- After a swap occurs, the internal vertical retrace counter is cleared.

Setting swabufferCMD[0]=1 is used to maintain constant frame rate. NOTE: for highest performance
when syncing-to-vsync, set the swapbuffer interval (swapbuffer CMD bits(8:1)) to zero.

Swapbuffer CM D bit(9) disables swapping, which has the effect of decrementing the outstanding swap
count, but not performing a video pointer swap. Note that if vertical retrace synchronization is disabled for
swapping buffers (swapbuffer CM D(0)=0), then the swap buffer interval field isignored. The

swapbuffer CM D on Avenger works similar to Voodoo Rush. The driver must write to the
swapbufferPend register to increase the outstanding swap count, then write to the swapbuffer CM D
register.

To enable triple buffering, turn on the appropriate bit in dram_init_1. If triple buffering is enabled, then
the graphics core will be allowed to continue given that one or fewer swaps is pending to be done by the
video unit. Effectively, this allows Avenger to render up to two frames ahead of the displayed buffer.

Bit Description

0 Synchronize frame buffer swapping to vertical retrace (1=enable)
81 Swap buffer interval

9 Swap buffer disable swap

8.20 fbzColorPath Register

The fbzColor Path register controls the color and alpha rendering pixel pipelines. Bitsin fbzColorPath
control color/alpha selection and lighting. Individual bits of fbzColorPath are set to enable modulation,
addition, etc. for various lighting effects including diffuse and specular highlights.

Bit Description

1:0 RGB Select (O=Iterated RGB, 1=TREX Color Output, 2=Color 1 RGB, 3=Reserved)

3:2 Alpha Select (O=Iterated A, 1=TREX Alpha Output, 2=Color 1 Alpha, 3=Reserved)

4 Color Combine Unit control (cc_localselect mux control: O=iterated RGB, 1=Color0
RGB)

6:5 Alpha Combine Unit control (cca localselect mux control: O=iterated alpha, 1=Color0
alpha, 2=iterated Z, 3=clamped iterated W)

7 Color Combine Unit control (cc_localselect_override mux control: O=cc_localselect,
1=Texture apha bit(7))

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 97 Updated 12/18/99




Avenger High Performance Graphics Engine

8 Color Combine Unit control (cc_zero_other mux control: 0=c_other, 1=zero)

9 Color Combine Unit control (cc_sub clocal mux control: O=zero, 1=c local)

12:10 Color Combine Unit control (cc_mselect mux control: O=zero, 1=c_local, 2=a_other,
3=a local, 4=texture alpha, 5=texture rgb, 6-7=reserved)

13 Color Combine Unit control (cc_reverse blend control)

14 Color Combine Unit control (cc_add clocal control)

15 Color Combine Unit control (cc_add alocal control)

16 Color Combine Unit control (cc_invert_output control)

17 Alpha Combine Unit control (cca zero other mux control: 0=a_other, 1=zero)

18 Alpha Combine Unit control (cca sub_clocal mux control: O=zero, 1=a local)

21:19 Alpha Combine Unit control (cca_mselect mux control: O=zero, 1=a local, 2=a other,
3=a local, 4=texture apha, 5-7=reserved)

22 Alpha Combine Unit control (cca reverse blend control)

23 Alpha Combine Unit control (cca add clocal control)

24 Alpha Combine Unit control (cca add_alocal control)

25 Alpha Combine Unit control (cca invert output control)

26 Parameter Adjust (1=adjust parameters for subpixel correction)

27 Enable Texture Mapping (1=enable)

28 Enable RGBA, Z, and W parameter clamping (1=enable)

29 Enable anti-aliasing (1=enable)

Note that the color channels are controlled separately from the alpha channel. There are two primary
color selection units: the Color Combine Unit(CCU) and the Alpha Combine Unit (ACU). Bits(1:0),
bit(4), and bits(16:8) of fbzColorPath control the Color Combine Unit. The diagram below illustrates the
Color Combine Unit controlled by the fbzColor Path register:

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 98 Updated 12/18/99



9 Avenger High Performance Graphics Engine

- Color Combine Unit -

colorl RGB
texture RGB Linear frame
. buffer RGB
iterated RGB color0 RGB iterated RGB
chromaKey, chromaRange
012 rgbselect[1:0] 10 O texture alpha bit(0)
] cc_localselect
Optional
Chroma-Key or cc_localselect_override
Chroma-Range c_other 0
Check c_local
0 1 cc_zero_other
0 A8
Invalidate Pixel cc_sub_clocal
a_other
a local
texture alpha
] Ol texture RGB
\— 012345 cc_mselect[2:0]
9180 |
- 8
9 signed x \ )
9 unsigned
multiply
Trunc. LSBs A 9180 8 cc_feverse, blend
No Round 1
a local
0 A 9090
00 01 10 {cc_add_clocal, cc_add_alocal}
8
101.9.0
| Clamp O-FFI
cc_invert_output 8
\__IJ
8 Color
0.8
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 99 Updated 12/18/99



Avenger High Performance Graphics Engine

3dfx

Bits(3:2), bits(6:5), and bits(25:

17) of fbzColor Path control the Alpha Combine Unit. The diagram

below illustrates the Alpha Combine Unit controlled by the fbzColor Path register:

colorl alpha
texture alpha Linear frame color0 alpha
ierated alpha buffer alpha iereted spha iterated Z(27:20), clamped
Aok Enable L iterated W(39:32), clamped
aselect[1:0] cca_localselect[1:0]
Alpha-Mask
Check
a other O

a loca
0 1 cca_zero_other

cca_sub_clocal

Trunc. LSBs 9 1.80 8
No Round

0 A8
j 0 1 ;
a other
8 0.8.0 =

2'sComp a loca

texture alpha
80.8.0

O

cca_mselect[2:0]

9 180

9 signed x \ I; -Ll)

9 unsigned
multiply

cca_reverse blend

a loca E:'

0 9 090

00 01 10 /_ {cca add clocal, cca_add_alocal}
8

101.9.0

0

cca_invert_output 18

\_IJ

8 apha

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary

100 Updated 12/18/99



d f Avenger High Performance Graphics Engine
3 \ !
A

Bit(26) of fbzColor Path enables subpixel correction for all parameters. When enabled, Avenger will
automatically subpixel correct the incoming color, depth, and texture coordinate parameters for triangles
not aligned on integer spatial boundaries. Enabling subpixel correction decreases the on-chip triangle
setup performance from 7 clocks to 16 clocks, but as the triangle setup engine is separately pipelined from
the triangle rasterization engine, little if any performance penalty is seen when subpixel correction is
enabled.

I mportant Note: When subpixel correction is enabled, the correction is performed on the start registers as
they are passed into the triangle setup unit from the PCI FIFO. As aresult, the host must pass down new
starting parameter information for each new triangle -- if new starting parameter information is not
passed down for a new triangle, the starting parameters will be subpixel corrected starting with the start
registers already subpixel corrected for the last rendered triangle [in effect the parameters will be subpixel
corrected twice, resulting in inaccuracies in the starting parameter values).

Bit(27) of fbzColorPath is used to enable texture mapping. If texture-mapped rendering is desired, then
bit(27) of fbzColor Path must be set. When bit(27)=1, then datais transfered from TREX to FBI. If
texture mapping is not desired (i.e. Gouraud shading, flat shading, etc.), then bit(27) may be cleared and
no datais transfered from TREX to FBI.

Bit(28) of fbzColorpath is used to enable RGBA, Z, and W parameter clamping. When fbzColor path
bit(28)=1, then the RGBA triangle parameters are be clamped to [0,0xff] inclusive during triangle
rasterization. Note that fbzColorpath bit(28) has no effect on the RGBA triangle parameters during
triangle setup or sub-pixel correction. When fbzColor path bit(28)=0, then the RGBA parameters are
allowed to wrap according to the following formula:

if(rgbalterator[23:12] == Oxfff)
rgbad anped[ 7: 0] = 0xO;
el se if(rgbalterator[23:12] == 0x100)
rgbad anped[ 7: 0] = Oxff;
el se
rgbad anped[7:0] = rgbalterator[19:12];

When fbzColor path bit(28)=1, then the Z triangle parameter is clamped to [0,0xffff] inclusive during
triangle rasterization. Note that fbzColor path bit(28) has no effect on the Z triangle parameter during
triangle setup or sub-pixel correction. Note also that the unclamped Z triangle iterator is used when
performing floating point Z-buffering (fbzM ode bit(21)=1). When fbzColor path bit(28)=0, then the Z
parameter is allowed to wrap according to the following formula:

if(zlterator[31:12] == Oxfffff)
zd anped[ 15: 0] = 0xO0;
else if(zlterator[31:12] == 0x10000)
zd anped[ 15: 0] = Oxffff;
el se
zd anped[ 15: 0] = zlterator[27:12];

When fbzColor path bit(28)=1, then the W triangle parameter is clamped to [0,0xff] inclusive for use in
the Alpha Combine Unit and the fog unit. Note that fbzColor path bit(28) has no effect on the W triangle
parameter during triangle setup or sub-pixel correction. Note also that the unclamped W triangle iterator
is used when performing floating point W-buffering (fbzM ode bit(21)=0). When fbzColor path
bit(28)=0, then the W parameter used as inputs to the ACU and fog unitsis alowed to wrap according to
the following formula:

if(WMterator[47:32] == Oxffff)

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 101 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

wCl anped[ 7: 0] = 0xO;
else if(zlterator[47:32] == 0x0100)
wCl anped[ 7: 0] = Oxff;
el se
wCl anped[ 7: 0] = witerator[39: 32];

Bit(29) of fbzColorpath used to enable anti-aliasing. FIXME...

8.21 fogMode Register
The fogM ode register controls the fog functionality of Avenger.

Bit Description

0 Enable fog (1=enable)

1 Fog Unit control (fogadd control: O=fogColor, 1=zero)

2 Fog Unit control (fogmult control: 0=Color Combine Unit RGB, 1=zero)

3 Fog Unit control (fogalpha control)

4 Fog Unit control (fogz control)

5 Fog Unit control (fogconstant control: 0=fog multiplier output, 1=fogColor)
6 Fog Unit control (fogdither control, dither the fog blending component)

7 Fog Unit control (fogzones control, enable signed fog delta)

The diagram below shows the fog unit of Avenger:

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 102 Updated 12/18/99




df ; Avenger High Performance Graphics Engine
3 )
A

Color Channel
(from Color foaColor iterated w
Combine Unit) g (4. 12 floating point) mantissa(9:2)
8
0 6 {4 bits exponent, 6 {4 bits exponent,
fogadd mantissa(11:10)} mantissa(11:10)}
YO_ ! 64x8 RAM 64x8 RAM
(fog alpha) (fog delta alpha)
(6.2 format) 8
(6.0 format) 6 8 (.8 format)
8 8 unsigned x
8 1101 6 unsigned
format, multipl
2nd Isb) by
10 (6.4 format) K K
Dither Matrix
bit(3)=y [0] xor x [0]
bit(2)=y [0]
11 bit(1)=y [1] xor x [1]
[ w bit(0)=y [1]
fogzones 11 (0.4 format) 4

4 (0.4 format)

(7.0 format) 7

1 (carry-out)

fogdither

fog table alpha

iterated alpha
iterated Z(27:20), clamped
iterated W(39:32), clamped

—

9 signed x {fogz, fogalpha}

9 unsigned
multiply

fogColor

9 (1.8 format)
fogconstant

fogenable

8 Color before fog 8 Fogged Color

Bit(0) of fogM ode is used to enable fog and atmospheric effects. When fog is enabled, the fog color
specified in the fogColor register is blended with the source pixels as afunction of the fogT able values
and iterated W. Avenger supports a 64-entry lookup table (fogT able) to support atmospheric effects such
as fog and haze. When enabled, the MSBs of a normalized floating point representation of (/W) is used
to index into the 64-entry fog table. The ouput of the lookup table isan “apha’ value which represents
the level of blending to be performed between the static fog/haze color and the incoming pixel color. 8
lower order bits of the floating point (/W) are used to blend between multiple entries of the lookup table
to reduce fog “banding.” The fog lookup table isloaded by the Host CPU, so various fog equations,
colors, and effects can be supported.

The following table shows the mathematical equations for the supported values of bits(2:1) of fogM ode
when bits(5:3)=0:

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 103 Updated 12/18/99



Avenger High Performance Graphics Engine

fi

Bit(0) - Enable | Bit(1) - fogadd | Bit(2) - fogmult | Fog Equation

Fog mux contr ol mux contr ol

0 ignored ignored Cout = Cin

1 0 0 Cout = Afog* Cfog + (1-Afog)*Cin
1 0 1 Cout = Afog* Cfog

1 1 0 Cout = (1-Afog)*Cin

1 1 1 Cout=0

where:

Cout = Color output from Fog block

Cin = Color input from Color Combine Unit Module
Cfog = fogColor register

AFog = aphavalue calculated from Fog table

When bit(3) of fogM ode is set, the integer part of the iterated alpha component is used as the fog a pha
instead of the calculated fog apha value from the fog table. When bit(4) of fogM ode is set, the upper 8
bits of the iterated Z component are used as the fog alphainstead of the calculated fog alpha value from
the fog table. If both bit(3) and bit(4) are set, then bit(4) takes precedence, and the upper 8 bits of the
iterated Z component are used for the fog apha value. Bit(5) of fogM ode takes precedence over bits(4:3)
and enables a constant value(fogColor) to be added to incoming source color.

8.22 alphaMode Register
The alphaM ode register controls the a pha blending and anti-aliasing functionality of Avenger.

Bit Description

0 Enable alpha function (1=enable)

31 Alpha function (see table below)

4 Enable alpha blending (1=enable)

5 reserved

7:8 reserved

11:8 Source RGB alpha blending factor (see table below)

15:12 Destination RGB alpha blending factor (see table below)
19:16 Source alpha-channel apha blending factor (see table below)
23:20 Destination alpha-channel alpha blending factor (see table below)
31:24 Alphareference value

Bits(3:1) specify the alpha function during rendering operations. The apha function and test pipelineis
shown below:

Revision 0.97
Updated 12/18/99

Copyright O 1996-1997 3Dfx Interactive, Inc.

Proprietary 104



Avenger High Performance Graphics Engine

301X

Alphafrom Alpha
Combine Unit

alphaMode(31:24)

J
1

1

afunc_It afunc_eq
afunc_gt

AlphaTest I'>O

enable

Alphatest pass

When alphaM ode bit(0)=1, an alpha comparison is performed between the incoming source alpha and
bits(31:24) of alphaMode. Section 5.18.1 below further describes the alpha function algorithm.

Bit(4) of alphaM ode enables alpha blending. When apha blending is enabled, the blending function is
performed to combine the source color with the destination pixel. The blending factors of the source and
destinations pixels are individually programmable, as determined by bits(23:8). Note that the RGB and
alpha color channels may have different alpha blending factors. Section 5.18.2 below further describes
alpha blending.

Bit(5) of alphaM ode is reserved.

8.22.1 Alphafunction

When the alphafunction is enabled (alphaM ode bit(0)=1), the following alpha comparison is performed:
AlphaSc AlphaOP AlphaRef
where AlphaSrc represents the apha value of the incoming source pixel, and AlphaRef is the value of
bits(31:24) of alphaMode. A source pixel iswritten into an RGB buffer if the alpha comparison istrue
and writing into the RGB buffer is enabled (fbzM ode bit(9)=1. If the aphafunction is enabled and the
alpha comparison is false, the fbiAfuncFail register is incremented and the pixel isinvalidated in the
pixel pipeline and no drawing occurs to the color or depth buffers. The supported al pha comparison
functions (AlphaOPs) are shown below:

Value AlphaOP Function

0 never

1 less than

2 equal

3 less than or equal

4 greater than

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 105 Updated 12/18/99




Avenger High Performance Graphics Engine

5 not equal
6 greater than or equal
7 always

8.22.2 Alpha Blending

When alpha blending is enabled (alphaM ode bit(4)=1), incoming source pixels are blended with
destination pixels. The alpha blending function for the RGB color componentsis as follows:

Dnew U (Sxa) + (Dold xb)

where
Drew  The new destination pixel being written into the frame buffer
S The new source pixel being generated
Dold The old (current) destination pixel about to be modified
a The source pixel alpha blending function.
b The destination pixel apha blending function.

The alpha blending function for the alpha components is as follows:
Anew U (AS xad) + (Aold xbd)

where
Anew
AS The new source alpha being generated
Aold The old (current) destination alpha about to be modified
ad The source alpha al pha-blending function.
bd The destination alpha al pha-blending function.

The new destination alpha being written into the al pha buffer

Note that the source and destination pixels may have different associated a pha blending functions. Also
note that RGB color components and the al pha components may have different associated alpha blending
functions. The alpha blending factors of the RGB color components are defined in bits(15:8) of

alphaM ode, while the apha blending factors of the alpha component is specified in bits(23:16) of

alphaMode. The following table lists the a pha blending functions supported:

Alpha Blending Function Alpha Blending Function Pneumonic Alpha Blending Function Description

0x0 AZERO Zero

Ox1 ASRC ALPHA Source apha

0x2 A _COLOR Color

0x3 ADST ALPHA Destination alpha

0x4 AONE One

0x5 AOMSRC ALPHA 1 - Source alpha

0x6 AOM_COLOR 1- Color

0x7 AOMDST ALPHA 1 - Destination alpha

0x8-Oxe Reserved

Oxf (source a pha blending function) ASATURATE MIN(Source alpha, 1 - Destination
alpha)

Oxf (destination alpha blending function) | A_ COLORBEFOREFOG Color before Fog Unit

When the value 0x2 is selected as the destination al pha blending factor, the source pixel color is used as
the destination blending factor. When the value 0x2 is selected as the source alpha blending factor, the
destination pixel color is used as the source blending factor. Note also that the alpha blending function
Oxf is different depending upon whether it is being used as a source or destination alpha blending
function. When the value Oxf is selected as the destination alpha blending factor, the source color before
the fog unit (*unfogged” color) is used as the destination blending factor -- this alpha blending function is
useful for multi-pass rendering with atmospheric effects. When the value Oxf is selected as the source

Copyright O 1996-1997 3Dfx Interactive, Inc.
Proprietary 106

Revision 0.97

Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

alpha blending factor, the alpha-saturate anti-aliasing algorithm is selected -- this MIN function performs
polygonal anti-aliasing for polygons which are drawn front-to-back.

8.23 IfbMode Register
The IfbM ode register controls linear frame buffer accesses.

Bit Description

3:0 Linear frame buffer write format (see table below)

54 Reserved

7:6 Reserved

8 Enable Avenger pixel pipeline-processed linear frame buffer writes (1=enable)
10:9 Linear frame buffer RGBA lanes (see tables below)

11 16-bit word swap linear frame buffer writes (1=enable)

12 Byte swizzle linear frame buffer writes (1=enable)

13 LFB access Y origin (O=top of screen is origin, 1=bottom of screen is origin)
14 Linear frame buffer write access W select (O=LFB selected, 1=zacolor[15:0]).
15 Reserved

16 Reserved

The following table shows the supported Avenger linear frame buffer write formats:

Value Linear Frame Buffer Write For mat

16-bit formats

0 16-bit RGB (5-6-5)

1 16-bit RGB (x-5-5-5)

2 16-bit ARGB (1-5-5-5)

3 Reserved
32-hit formats

4 24-hit RGB (x-8-8-8)

5 32-hit ARGB (8-8-8-8)

7:6 Reserved

11:8 Reserved

12 16-bit depth, 16-bit RGB (5-6-5)

13 16-bit depth, 16-bit RGB (x-5-5-5)

14 16-bit depth, 16-bit ARGB (1-5-5-5)

15 16-bit depth, 16-bit depth

When accessing the linear frame buffer, the cpu accesses information from the starting linear frame buffer
(LFB) address space (see section 4 on Avenger address space) plus an offset which determines the <x,y>
coordinates being accessed. Bits(3:0) of IfbM ode define the format of linear frame buffer writes.

When writing to the linear frame buffer, IfbM ode bit(8)=1 specifies that LFB pixels are processed by the
normal Avenger pixel pipeline -- this implies each pixel written must have an associated depth and alpha
value, and is also subject to the fog mode, alpha function, etc. If bit(8)=0, pixelswritten using LFB access
bypass the normal Avenger pixel pipeline and are written to the specified buffer unconditionally and the
values written are unconditionally written into the color/depth buffers except for optional color dithering
[depth function, alpha blending, alphatest, and color/depth write masks are all bypassed when bit(8)=0].
If bit(8)=0, then only the buffers that are specified in the particular LFB format are updated. Also note

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 107 Updated 12/18/99




df ; Avenger High Performance Graphics Engine
3 )
A

that if IfbM ode bit(8)=0 that the color and Z mask bits in fbzM ode(bits 9 and 10) are ignored for LFB
writes. For example, if LFB modes 0-2, or 4 are used and bit(8)=0, then only the color buffers are updated
for LFB writes (the depth buffer is unaffected by all LFB writes for these modes, regardless of the status of
the Z-mask bit fbzM ode bit 10). However, if LFB modes 12-14 are used and bit(8)=0, then both the color
and depth buffers are updated with the LFB write data, irrespective of the color and Z mask bitsin
fbzMode. If LFB mode 15 is used and bit(8)=0, then only the depth buffer is updated for LFB writes (the
color buffers are unaffected by al LFB writes in this mode, regardless of the status of the color mask bits
in fbzM ode).

If IfbM ode bit(8)=0 and a LFB write format is selected which contains an alpha component (formats 2, 5,
and 14) and the alpha buffer is enabled, then the alpha component is written into the al pha buffer.
Conversdly, if the alpha buffer is not enabled, then the alpha component of LFB writes using formats 2, 5,
and 14 when bit(8)=0 are ignored. Note that anytime LFB formats 2, 5, and 14 are used when bit(8)=0
that blending and/or chroma-keying using the alpha component is not performed since the pixel-pipeline
is bypassed when hit(8)=0.

If IfbM ode bit(8)=0 and LFB write format 14 is used, the component that isignored is determined by
whether the alpha buffer is enabled -- If the alpha buffer is enabled and LFB write format 14 is used with
bit(8)=0, then the depth component isignored for all LFB writes. Conversdly, if the apha buffer is
disabled and LFB write format is used with bit(8)=0, then the alpha component isignored for all LFB
writes.

If IfbM ode bit(8)=1 and a LFB write access format does not include depth or alpha information (formats
0-5), then the appropriate depth and/or alphainformation for each pixel written is taken from the zaColor
register. Notethat if bit(8)=1 that the LFB write pixels are processed by the normal Avenger pixel
pipeline and thus are subject to the per-pixel operations including clipping, dithering, alpha-blending,
alpha-testing, depth-testing, chroma-keying, fogging, and color/depth write masking.

Bits(10:9) of IfbM ode specify the RGB channel format (color lanes) for linear frame buffer writes. The
table below shows the Avenger supported RGB lanes:

Value RGB Channel Format
0 ARGB
1 ABGR
2 RGBA
3 BGRA

Bit(11) of IfbM ode defines the format of 2 16-bit data types passed with a single 32-bit writes. For linear
frame buffer formats 0-2, two 16-bit data transfers can be packed into one 32-bit write -- bit(11) defines
which 16-bit shorts correspond to which pixels on screen. The table below shows the pixel packing for
packed 32-bit linear frame buffer formats 0-2:

IfbM ode bit(11) Screen Pixel Packing
0 Right Pixel(host data 31:16), Left Pixel(host data 15:0)
1 Left Pixel(host data 31:16), Right Pixel(host data 15:0)

For linear frame buffer formats 12-14, bit(11) of IfbM ode defines the bit locations of the 2 16-bit data
types passed. The table below shows the data packing for 32-bit linear frame buffer formats 12-14:

IfbM ode bit(11) Screen Pixel Packing
0 Z value(host data 31:16), RGB value(host data 15:0)
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 108 Updated 12/18/99




Avenger High Performance Graphics Engine

| RGB value(host data 31:16), Z value(host data 15:0)

1

For linear frame buffer format 15, bit(11) of IfbM ode defines the bit locations of the 2 16-bit depth values
passed. The table below shows the data packing for 32-bit linear frame buffer format 15:

IfbM ode bit(11) Screen Pixel Packing
0 Z Right Pixel(host data 31:16), Z Left Pixel(host data 15:0)
1 Z left Pixel(host data 31:16), Z Right Pixel(host data 15:0)

Note that bit(11) of IfbMode isignored for linear frame buffer writes using formats 4 or 5.

Bit(12) of IfbM ode is used to enable byte swizzling. When byte swizzling is enabled, the 4-bytes within a
32-bit word are swizzled to correct for endian differences between Avenger and the host CPU. For little
endian CPUs (e.g. Intel x86 processors) byte swizzling should not be enabled, however big endian CPUs
(e.g. PowerPC processors) should enable byte swizzling. For linear frame buffer writes, the bytes within a
word are swizzled prior to being modified by the other control bits of IfbMode. When byte swizzling is
enabled, bits(31:24) are swapped with bits(7:0), and bits(23:16) are swapped with bits(15:8).

Very Important Note: The order of swapping and swizzling operations for LFB writesis asfollows: byte
swizzling is performed first on all incoming LFB data, as defined by [fbM ode bit(12) and irrespective of
the LFB dataformat. After byte swizzling, 16-bit word swapping is performed as defined by IfbM ode
bit(11). Note that 16-bit word swapping is never performed on LFB data when data formats 4 and 5 are
used. Also note that 16-bit word swapping is performed on the LFB data that was previously optionally
swapped. Finaly, after both swizzling and 16-bit word swapping are performed, the individual color
channels are selected as defined in [fbM ode bits(10:9). Note that the color channels are selected on the
LFB data that was previously swizzled and/or swapped

Bit(13) of IfbM ode is used to define the origin of the Y coordinate for al linear frame buffer writes when
the pixel pipelineis bypassed (IfbM ode bit(8)=0). Note that bit(13) of IfbM ode does not affect rendering
operations (FASTFILL and TRIANGLE commands) -- bit(17) of fbzM ode defines the origin of the Y
coordinate for rendering operations. Note also that if the pixel pipeline is enabled for linear frame buffer
writes (IfbM ode bit(8)=1), then fbzM ode bit(17) is used to determine the location of the Y origin. When
cleared, the Y origin (Y=0) for all linear frame buffer accesses is defined to be at the top of the screen.
When bit(13) is set, the Y origin for all linear frame buffer accesses is defined to be at the bottom of the
screen.

Bit(14) of IfbM ode is used to select the W component used for LFB writes processed through the pixel
pipeline. If bit(14)=0, then the MSBs of the fractional component of the 48-bit W value passed to the
pixel pipeline for LFB writes through the pixel pipelineisthe 16-bit Z value associated with the LFB
write. [Note that the 16-bit Z value associated with the LFB write is dependent on the LFB format, and is
either passed down pixel-by-pixel from the CPU, or is set to the constant zaColor (15:0)]. If bit(14)=1,
then the M SBs of the fractional component of the 48-bit W value passed to the pixel pipeline for LFB
writesis zacolor (15:0). Regardless of the setting of bit(14), when LFB writes go through the pixel
pipeline, all other bits except the 16 MSBs of the fractional component of the W value are set to 0xO.
Note that bit(14) isignored if LFB writes bypass the pixel pipeline.

8.23.1 Linear Frame Buffer Writes

Linear frame buffer writes -- format O:
When writing to the linear frame buffer with 16-bit format 0 (RGB 5-6-5), the RGB channel format
specifies the RGB ordering within a 16-bit word. If the Avenger pixel pipelineis enabled for LFB

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 109 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

accesses (IfbM ode bit(8)=1), then alpha and depth information for LFB format O is taken from the
zaColor register. The following table shows the color channels for 16-bit linear frame buffer access
format O:

RGB Channd 16-bit Linear frame RGB Channd
Format Value buffer access bits

0 15.0 Red (15:11), Green(10:5), Blue(4:0)

1 15.0 Blue (15:11), Green(10:5), Red(4:0)

2 15.0 Red (15:11), Green(10:5), Blue(4:0)

3 15.0 Blue (15:11), Green(10:5), Red(4:0)

Linear frame buffer writes -- format 1:

When writing to the linear frame buffer with 16-bit format 1 (RGB 5-5-5), the RGB channel format
specifies the RGB ordering within a 16-bit word. If the Avenger pixel pipelineis enabled for LFB
accesses (IfbM ode bit(8)=1), then alpha and depth information for LFB format 1 is taken from the
zaColor register. The following table shows the color channels for 16-bit linear frame buffer access
format 1

RGB Channd 16-bit Linear frame RGB Channd
Format Value buffer access bits
0 15.0 Ignored(15), Red (14:10), Green(9:5), Blug(4:0)
1 15.0 Ignored(15), Blue (14:10), Green(9:5), Red(4:0)
2 15.0 Red (15:11), Green(10:6), Blue(5:1), Ignored(0)
3 15.0 Blue (15:11), Green(10:6), Red(5:1), Ignored(0)

Linear frame buffer writes -- format 2:

When writing to the linear frame buffer with 16-bit format 2 (ARGB 1-5-5-5), the RGB channel format
specifies the RGB ordering within a 16-bit word. If the Avenger pixel pipelineis enabled for LFB
accesses (IfbM ode bit(8)=1), then depth information for LFB format 2 is taken from the zaColor register.
Note that the 1-bit alpha value passed when using LFB format 2 is bit-replicated to yield the 8-bit alpha
used in the pixel pipeline. The following table shows the color channels for 16-bit linear frame buffer
access format 2:

RGB Channd 16-bit Linear frame RGB Channd
Format Value buffer access bits
0 15.0 Alpha(15), Red (14:10), Green(9:5), Blug(4:0)
1 15.0 Alpha(15), Blue (14:10), Green(9:5), Red(4:0)
2 15.0 Red (15:11), Green(10:6), Blug(5:1), Alpha(0)
3 15.0 Blue (15:11), Green(10:6), Red(5:1), Alpha(0)

Linear frame buffer writes-- format 3:
Linear frame buffer format 3 is an unsupported format.

Linear frame buffer writes -- format 4:

When writing to the linear frame buffer with 24-bit format 4 (RGB x-8-8-8), the RGB channel format
specifies the RGB ordering within a 24-bit word. Note that the alpha/A channel isignored for 24-bit
access format 4. Also note that while only 24-bits of datais transfered for format 4, all data access must
be 32-bit aligned -- packed 24-bit writes are not supported by Avenger. If the Avenger pixel pipelineis
enabled for LFB accesses (IfbM ode bit(8)=1), then alpha and depth information for LFB format 4 is taken
from the zaColor register. The following table shows the color channels for 24-bit linear frame buffer
access format 4

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 110 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

RGB Channd 24-bit Linear frame RGB Channd
Format Value buffer access bits
(aligned to 32-bits)
0 31.0 Ignored(31:24), Red (23:16), Green(15:8), Blue(7:0)
1 31.0 Ignored(31:24), Blue(23:16), Green(15:8), Red(7:0)
2 31.0 Red(31:24), Green(23:16), Blug(15:8), Ignored(7:0)
3 31.0 Blue(31:24), Green(23:16), Red(15:8), Ignored(7:0)

Linear frame buffer writes -- format 5:

When writing to the linear frame buffer with 32-bit format 5 (ARGB 8-8-8-8), the RGB channel format
specifies the ARGB ordering within a 32-bit word. If the Avenger pixel pipelineisenabled for LFB
accesses (IfbM ode bit(8)=1), then depth information for LFB format 5 is taken from the zaColor register.
The following table shows the color channels for 32-bit linear frame buffer access format 5.

RGB Channd 24-bit Linear frame RGB Channd
Format Value buffer access bits
(aligned to 32-bits)
0 31.0 Alpha(31:24), Red (23:16), Green(15:8), Blueg(7:0)
1 31.0 Alpha(31:24), Blue(23:16), Green(15:8), Red(7:0)
2 31.0 Red(31:24), Green(23:16), Blue(15:8), Alpha(7:0)
3 31.0 Blue(31:24), Green(23:16), Red(15:8), Alpha(7:0)

Linear frame buffer writes-- formats 6-11:
Linear frame buffer formats 6-11 are unsupported formats.

Linear frame buffer writes -- format 12:

When writing to the linear frame buffer with 32-bit format 12 (Depth 16, RGB 5-6-5), the RGB channel
format specifies the RGB ordering within the 32-bit word. If the Avenger pixel pipelineis enabled for
LFB accesses (IfbM ode bit(8)=1), then alphainformation for LFB format 12 is taken from the zaColor
register. Note that the format of the depth value passed when using LFB format 12 must precisely match
the format of the type of depth buffering being used (either 16-bit integer Z or 16-bit floating point 1/W).
The following table shows the 16-bit color channels within the 32-bit linear frame buffer access format
12:

RGB Channd 16-bit Linear frame RGB Channd
Format Value buffer access bits

0 15.0 Red (15:11), Green(10:5), Blue(4:0)

1 15.0 Blue (15:11), Green(10:5), Red(4:0)

2 15.0 Red (15:11), Green(10:5), Blue(4:0)

3 15.0 Blue (15:11), Green(10:5), Red(4:0)

Linear frame buffer writes -- format 13:

When writing to the linear frame buffer with 32-bit format 13 (Depth 16, RGB x-5-5-5), the RGB channel
format specifies the RGB ordering within the 32-bit word. If the Avenger pixel pipelineis enabled for
LFB accesses (IfbM ode bit(8)=1), then alphainformation for LFB format 13 is taken from the zaColor
register. Note that the format of the depth value passed when using LFB format 13 must precisely match
the format of the type of depth buffering being used (either 16-bit integer Z or 16-bit floating point 1/W).
The following table shows the 16-bit color channels within the 32-bit linear frame buffer access format
13:

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 111 Updated 12/18/99




Avenger High Performance Graphics Engine

RGB Channd 16-bit Linear frame RGB Channd
Format Value buffer access bits
0 15.0 Ignored(15), Red (14:10), Green(9:5), Blug(4:0)
1 15.0 Ignored(15), Blue (14:10), Green(9:5), Red(4:0)
2 15.0 Red (15:11), Green(10:6), Blue(5:1), Ignored(0)
3 15.0 Blue (15:11), Green(10:6), Red(5:1), Ignored(0)

Linear frame buffer writes -- format 14:

When writing to the linear frame buffer with 32-bit format 14 (Depth 16, ARGB 1-5-5-5), the RGB
channel format specifies the RGB ordering within the 32-bit word. Note that the format of the depth
value passed when using LFB format 14 must precisely match the format of the type of depth buffering
being used (either 16-bit integer Z or 16-bit floating point /W). Also note that the 1-bit alpha value
passed when using LFB format 14 is bit-replicated to yield the 8-bit alpha used in the pixel pipeline. The
following table shows the 16-bit color channels within the 32-bit linear frame buffer access format 14:

RGB Channd 16-bit Linear frame RGB Channd
Format Value buffer access bits
0 15.0 Alpha(15), Red (14:10), Green(9:5), Blug(4:0)
1 15.0 Alpha(15), Blue (14:10), Green(9:5), Red(4:0)
2 15.0 Red (15:11), Green(10:6), Blug(5:1), Alpha(0)
3 15.0 Blue (15:11), Green(10:6), Red(5:1), Alpha(0)

Linear frame buffer writes -- format 15:

When writing to the linear frame buffer with 32-bit format 15 (Depth 16, Depth 16), the format of the
depth values passed must precisely match the format of the type of depth buffering being used (either 16-
bit integer Z or 16-hit floating point 1/W). If the Avenger pixel pipelineis enabled for LFB accesses
(IfbM ode bit(8)=1), then RGB color information is taken from the color 1 register, and al phainformation
for LFB format 15 istaken from the zaColor register.

8.24 fbzM ode Register

The fbzM ode register controls frame buffer and depth buffer rendering functions of the Avenger
processor. Bitsin fbzM ode control clipping, chroma-keying, depth-buffering, dithering, and masking.

Bit Description

0 Enable clipping rectangle (1=enable)

1 Enable chroma-keying (1=enable)

2 Enable stipple register masking (1=enable)

3 W-Buffer Select (0=Use Z-value for depth buffering, 1=Use W-value for depth
buffering)

4 Enable depth-buffering (1=enable)

75 Depth-buffer function (see table below)

8 Enable dithering (1=enable)

9 RGB buffer write mask (O=disable writes to RGB buffer)

10 Depth/alpha buffer write mask (O=disable writes to depth/alpha buffer)

11 Dither algorithm (0=4x4 ordered dither, 1=2x2 ordered dither)

12 Enable Stipple pattern masking (1=enable)

13 Enable Alpha-channel mask (1=enable alpha-channel masking)

15:14 Reserved

16 Enable depth-biasing (1=enable)

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 112 Updated 12/18/99



Avenger High Performance Graphics Engine

17 Rendering commands Y origin (O=top of screen is origin, 1=bottom of screen is origin)

18 Enable alpha planes (1=enable)

19 Enable alpha-blending dither subtraction (1=enable)

20 Depth buffer source compare select (0=normal operation, 1=zaColor[15:0])

21 Depth float select (O=iterated W is used for floating point depth buffering, 1=iterated Z
is used for floating point depth buffering)

Bit(0) of fbzM ode is used to enable the clipping register. When set, clipping to the rectangle defined by
the clipL eftRight and clipBottomT op registersinclusive is enabled. When clipping is enabled, the
bounding clipping rectangle must always be less than or equal to the screen resolution in order to clip to
screen coordinates. Also note that if clipping is not enabled, rendering may not occur outside of the
screen resolution. Bit(1) of fbzM ode is used to enable the color compare check (chroma-keying). When
enabled, any source pixel matching the color specified in the chromaK ey register is not written to the
RGB buffer. The chroma-key color compare is performed immediately after texture mapping lookup, but
before the color combine unit and fog in the pixel datapath.

Bit(2) of fbzM ode is used to enable stipple register masking. When enabled, bit(12) of fbzM odeis used
to determine the stipple mode -- bit(12)=0 specifies stipple rotate mode, while bit(12)=1 specifies stipple
pattern mode.

When stipple register masking is enabled and stipple rotate mode is selected, bit(31) of the stipple register
is used to mask pixelsin the pixel pipeline. For all triangle commands and linear frame buffer writes
through the pixel pipeline, pixels are invalidated in the pixel pipelineif stipple bit(31)=0 and stipple
register masking is enabled in stipple rotate mode. After an individual pixel is processed in the pixel
pipeling, the stipple register is rotated from right-to-left, with the value of bit(0) filled with the value of
bit(31). Note that the stipple register is rotated regardless of whether stipple masking is enabled (bit(2) in
fbzM ode) when in stipple rotate mode.

When stipple register masking is enabled and stipple pattern mode is selected, the spatial <x,y>
coordinates of a pixel processed in the pixel pipeline are used to lookup a 4x8 monochrone pattern stored
in the stipple register -- the resultant lookup value is used to mask pixelsin the pixel pipeline. For all
triangle commands and linear frame buffer writes through the pixel pipeline, a stipple bit is selected from
the stipple register as follows:
switch(pixel_Y[1:0]) {
case O: stipple Y _sal[7:0] = stipple[7:0];
case 1: gtipple Y _sal[7:0] = stipple[15:8];
case 2: stipple Y _sd[7:0] = stipple[23:16];
case 3: stipple Y _sd[7:0] = stipple[31:24];
}
switch(pixel _X[2:0] {
case 0: stipple_mask_hit = stipple_Y_sel[7];
case 1: stipple_mask_hit = stipple_Y_sel[6];
case 2: stipple_mask_hit = stipple_Y_sel[5];
case 3: stipple_mask_hit = stipple_Y_sel[4];
case 4: stipple_mask_hit = stipple_Y_sel[3];
case 5: stipple_mask_hit = stipple_Y_sdl[2];
case 6: stipple_mask_hit = stipple_Y_sel[1];
case 7: stipple_mask_hit = stipple_Y_sel[0];

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 113 Updated 12/18/99




df ; Avenger High Performance Graphics Engine
3 )
A,

If the stipple_mask_bit=0, the pixel isinvalidated in the pixel pipeline when stipple register masking is
enabled and stipple pattern mode is selected. Note that when stipple pattern mode is selected the stipple
register is never rotated.

Bits(4:3) specify the depth-buffering function during rendering operations. The depth buffering pipeline
is shown below:

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 114 Updated 12/18/99



1 . . .
) Avenger High Performance Graphics Engine
301X
A
iterated Z[31:0], unclamped iterated W[47:0], unclamped
treat as 4.28 value, line up : .
iterated W[47:0] decimal points with 16.32 w-term iterated Z[27:12], clamped
unclamped ! and zero extended to 48 bits 1 0 depthfloat_select
48 ' 48 floatSel

if(Jw-iter[47:32]) {
mant = 0, exp = Oxf, underflow = 1
} elseif(!| w-iter[31:16]) {
mant = 1, exp = Oxf, underflow = 0
}else{
exp = find_first_one(w=iter[31:16])
mant = (w-iter[30:16] << exp), underflow = 0

if(|floatSel[47:32]) {

mant = 0, exp = Oxf, underflow = 1
} elseif(!| floatSel[31:16]) {

mant = 1, exp = Oxf, underflow = 0
} else{

exp = find_first_one(floatSel[31:16]) A 16 (integer only)

mant = (floatSel[30:16] << exp), underflow = O}

} }
exponent 44 12 mantissa  underflow exponent 44 12 mantissa
To adder logic
4] 12 9 4] 12

wfloat format:

(B 1.<mant> * 2"exp

wfloat_select

zaColor[15:0]

cin=1

16
-

cin_wfloat_select

1. Sign extend 16-bit zaColor to 18 bits
2. Convert 16-bit depth to 18-bit
{ underflow,underflow,depth}
3. Add 18-bit values
4. Clamp to O-FFFF

zbias enable

To Fog Unit

L

1

old Depth
(from Depth Buffer)

J
L

4

11

zfunc_lt
zfunc_gt

zfunc_eq

o

Depth Buffer
enable

l Depth test pass

Bit(4) of fbzM ode is used to enable depth-buffering. When depth buffering is enabled, a depth
comparison is performed for each source pixel as defined in bits(7:5). When bit(3)=0, the z iterator is
used for the depth buffer comparison. When hit(3)=1, the w iterator is used for the depth buffer
comparison. When bit(3)=1 enabling w-buffering, the inverse of the normalized w iterator is used for the

Copyright O 1996-1997 3Dfx Interactive, Inc.
Proprietary

Revision 0.97

115 Updated 12/18/99



d f Avenger High Performance Graphics Engine
3 \ !
A

depth-buffer comparison. Thisin effect implements a floating-point w-buffering scheme utilizing a 4-bit
exponent and a 12-bit mantissa. The inverted w iterator is used so that the same depth buffer comparisons
can be used as with atypical z-buffer. Section 5.19.1 below further describes the depth-buffering
algorithm.

Bit(8) of fbzM ode enables 16-bit color dithering. When enabled, native 24-bit source pixels are dithered
into 16-bit RGB color values with no performance penalty. When dithering is disabled, native 24-bit
source pixels are converted into 16-bit RGB color values by bit truncation. When dithering is enabled,
bit(11) of fbzM ode defines the dithering algorithm -- when bit(11)=0 a 4x4 ordered dither algorithm is
used, and when hit(11)=1 a 2x2 ordered dither algorithm is used to convert 24-bit RGB pixelsinto 16-bit
frame buffer colors.

Bit(9) of fbzM ode enables writes to the RGB buffers. Clearing bit(9) invalidates all writes to the RGB
buffers, and thus the RGB buffers remain unmodified for all rendering operations. Bit(9) must be set for
normal drawing into the RGB buffers. Similarly, bit(10) enables writes to the depth-buffer. When
cleared, writes to the depth-buffer are invalidated, and the depth-buffer state is unmodified for all
rendering operations. Bit(10) must be set for normal depth-buffered operation.

Bit(13) of fbzM ode enables the alpha-channel mask. When enabled, bit(0) of the incoming alphavalueis
used to mask writes to the color and depth buffers. If alpha channel masking is enabled and bit(0) of the
incoming alpha value is 0, then the pixel isinvalidated in the pixel pipeline, the fbiAfuncFail register is
incremented, and no drawing occurs to the color or depth buffers. If apha channel masking is enabled
and hit(0) of the incoming alphavalueis 1, then the pixel is drawn normally subject to depth function,
alpha blending function, aphatest, and color/depth masking.

Bit(16) of fbzM ode is used to enable the Depth Buffer bias. When bit(16)=1, the calculated depth value
(irrespective of Z or /W type of depth buffering selected) is added to bits(15:0) of zaColor. Depth buffer
biasing is used to elimate aliasing artifacts when rendering co-planar polygons.

Bit(17) of fbzM ode is used to define the origin of the Y coordinate for rendering operations (FASTFILL
and TRIANGLE commands) and linear frame buffer writes when the pixel pipeline is bypassed for linear
frame buffer writes (IfbM ode bit(8)=0). Note that bit(17) of fbzM ode does not affect linear frame buffer
writes when the pixel pipeline is bypassed for linear frame buffer writes (IfbM ode bit(8)=0), asin this
situation bit(13) of IfbM ode specifiesthe Y origin for linear frame buffer writes. When cleared, the Y
origin (Y=0) for all rendering operations and linear frame buffer writes when the pixel pipeline is enabled
is defined to be at the top of the screen. When bit(17) is set, the Y origin is defined to be at the bottom of
the screen.

Bit(18) of fbzM ode is used to enable the destination alpha planes. When set, the auxiliary buffer will be
used as destination alpha planes. Note that if bit(18) of fbzM ode is set that depth buffering cannot be
used, and thus bit(4) of fbzM ode (enable depth buffering) must be set to 0xO0.

Bit(19) of fbzM ode is used to enable dither subtraction on the destination color during alpha blending.
When dither subtraction is enabled (fbzM ode bit(19)=1), the dither matrix used to convert 24-bit color to
16-hit color is subtracted from the destination color before applying the alpha-blending algorithm.
Enabling dither subtraction is used to enhance image quality when performing al pha-blending.

Bit(20) of fbzM ode is used to select the source depth value used for depth buffering. When fbzM ode
bit(20)=0, the source depth value used for the depth buffer comparison is either iterated Z or iterated W
(as selected by fbzM ode bit(3)) and may be biased (as controlled by fbzM ode bit(16)). When fbzM ode
bit(20)=1, the constant depth value defined by zaColor[15:0] is used as the source depth value for the

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 116 Updated 12/18/99



df | Avenger High Performance Graphics Engine
3 )
A

depth buffer comparison. Regardless of the state of fbzM ode hit(20), the biased iterated Z/W is written
into the depth buffer if the depth buffer function passes.

Bit(21) of fbzM ode is used to select either the w iterator or the z iterator to be used for floating point
depth buffering. Foating point depth buffering is enabled when fbzM ode bit(4)=1. When fbzM ode
bit(21)=0, then the unclamped w iterator is converted to a 4.12 floating point representation and used for
depth buffering. When fbzM ode bit(21)=1, then the unclamped z iterator is converted into a4.12
floating point format and used for depth buffering.

8.24.1 Depth-buffering function

When the depth-buffering is enabled (fbzM ode bit(4)=1), the following depth comparison is performed:
DEPTHsrc DepthOP DEPTHdst

where DEPTHsrc and DEPTHdSst represent the depth source and destination values respectively. A source

pixel iswritten into an RGB buffer if the depth comparison is true and writing into the RGB buffer is

enabled (fbzM ode bit(9)=1). The source depth value is written into the depth buffer if the depth

comparison is true and writing into the depth buffer is enabled (fbzM ode bit(10)=1). The supported

depth comparison functions (DepthOPs) are shown below:

<
Q
c
)

DepthOP Function

never

less than

equal

less than or equal

greater than

not equal

greater than or equal

N[OOI W[IN[F|O

always

8.25 dtipple Register

The stipple register specifies amask which is used to enable individual pixel writes to the RGB and depth
buffers. See the stipple functionality description in the fbzM ode register description for more
information.

Bit Description

31:0 stipple value

8.26 colorO Register

The color O register specifies constant color values which are used for certain rendering functions. In
particular, bits(23:0) of color0 are optionally used as the c_local input in the color combine unit. In
addition, bits(31:24) of color0 are optionally used as the c_local input in the alpha combine unit. See the
fbzColorPath register description for more information.

Bit Description

7:0 Constant Color Blue

15:8 Constant Color Green

23:16 Constant Color Red

31:24 Constant Color Alpha

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 117 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

8.27 colorl Register

The color 1 register specifies constant color values which are used for certain rendering functions. In
particular, bits(23:0) of color 1 are optionally used as the c_other input in the color combine unit selected
by bits(1:0) of fbzColor Path. The alpha component of color 1(bits(31:24)) are optionally used as the
a_other input in the alpha combine unit selected by bits(3:2) of fbzColorPath. The color1 register
bits(23:0) are also used by the FASTFILL command as the constant color for screen clears. Also, for
linear frame buffer write format 15(16-bit depth, 16-bit depth), the color for the pixel pipelineis taken
from color 1 if the pixel pipelineis enabled for linear frame buffer writes (IfbM ode bit(8)=1).

Bit Description

7.0 Constant Color Blue
15:8 Constant Color Green
23:16 Constant Color Red
31:24 Constant Color Alpha

8.28 fogColor Register

The fogColor register is used to specify the fog color for fogging operations. Fog is enabled by setting
bit(0) in fogM ode. See the fogM ode and fogT able register descriptions for more information fog.

Bit Description

7.0 Fog Color Blue
15:8 Fog Color Green
23:16 Fog Color Red
31:24 reserved

8.29 zaColor Register

The zaColor register is used to specify constant alpha and depth values for linear frame buffer writes,
FASTFILL commands, and co-planar polygon rendering support. For certain linear frame buffer access
formats, the alpha and depth values associated with a pixel written are the values specified in zaColor.
See the IfbM ode register description for more information. When executing the FASTFILL command,
the constant 16-bit depth value written into the depth buffer is taken from bits(15:0) of zaColor. When
fbzM ode bit(16)=1 enabling depth-biasing, the constant depth value required is taken from zaColor
bits(15:0).

Bit Description
15:0 Constant Depth
23:16 reserved

31:24 Constant Alpha

8.30 chromaKey Register

The chromakK ey register specifies a color which is compared with all pixelsto be written into the RGB
buffer. If acolor match is detected between an outgoing pixel and the chromakK ey register, and chroma-
keying is enabled (bit(1)=1 in the fbzM ode register), then the pixel is not written into the frame buffer.
An outgoing pixel will still be written into the RGB buffer if chroma-keying is disabled or the
chromakK ey color does not equal the outgoing pixel color. Note that the alpha color component of an
outgoing pixel isignored in the chroma-key color match circuitry. The chroma-key comparison is
performed immediately after texture lookup, but before lighting, fog, or alpha blending. See the

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 118 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
.

description of the fbzColor Path register for further information on the location of the chroma-key
comparison circuitry. The format of chromaKey is a 24-bit RGB color.

Bit Description

7:0 Chroma-key Blue
15:8 Chroma-key Green
23:16 Chroma-key Red
31:24 reserved

8.31 chromaRange Register

The chromaRange register specifies a 24-bit RGB color value which is comared to all pixels to be written
to the color buffer. 1f chroma-keying is enabled (fbzM ode[1]) and chroma-ranging is enabled
(chromaRange[28]), the outgoing pixel color is compared to a color range formed by the colors of the
chromaKey and chromaRange registers.

Each RGB color component of the chromaK ey and chromaRange registers defines a chroma range for
the color component The color component range includes the lower limit color from the chromaK ey
register and the upper limit color from the chromaRange register. Software must program the lower
limits less-than or equal to the upper limits.

Each RGB color component chromaRange mode defines the color component range as inclusive or
exclusive. Inclusive ranges prohibit colors within the range and exclusive ranges prohibit colors outside
of the range.

Prohibited colors are blocked from the frame buffer based on the chromaRange mode. This mode may be
set to “intersection” or “union”. The intersection mode blocks pixels prohibited by all of the color
components and the union mode blocks pixels prohibited by any of the color components

Bit Description

7:0 Chroma-Range Blue Upper Limit

15:8 Chroma-Range Green Upper Limit

23:16 Chroma-Range Red Upper Limit

24 Chroma-Range Blue Mode (O=inclusive; 1=exclusive)
25 Chroma-Range Green Mode (O=inclusive; 1=exclusive)
26 Chroma-Range Red Mode (O=inclusive; 1=exclusive)
27 Chroma-Range Block Mode (O=intersection; 1=union)
28 Chroma-Range Enable (0=disable; 1=enable)

31:29 reserved

8.32 userintrCMD Register
Writing to the user Intr CM D register executes the USERINTERRUPT command:

Bit Description

0 Wait for USERINTERRUPT to be cleared before continuing (1=stall graphics engine
until interrupt is cleared)

1 Wait for interrupt generated by USERINTERRUPT (visible in intr Ctrl bit(11)) to be
cleared before continuing (1=stall graphics engine until interrupt is cleared)

9:2 User interrupt Tag

If the data written to userIntr CM D bit(0)=0, then a user interrupt is generated (intr Ctrl bit(11) is set to
1). If the data written to userIntr CM D hit(1)=1, then the graphics engine stalls and waits for the

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 119 Updated 12/18/99




df ; Avenger High Performance Graphics Engine
3 )
A

USERINTERRUPT interrupt to be cleared before continuing processing additional commands. If no
USERINTERRUPT interrupt is set and the data written to user Intr CM D bit(1)=1, then the graphics
engine will not stall and will continue to process additional commands. Software may also use
combinations of intrCtrl bits(1:0) to generate different functionality.

The tag associated with a user interrupt is written to user Intr CM D bits 9:2. When a user interrupt is
generated, the respective tag associated with the user interrupt is read from Intr Ctrl bits 19:12.

If the USERINTERRUPT command does not stall the graphics engine (userIntr CMD(0)=1), then a
potential race condition occurs between multiple USERINTERRUPT commands and software user
interrupt processing. In particular, multiple USERINTERRUPT commands may be generated before
software is able to process the first interrupt. Irrespective of how many user interrupts have been
generated, the user interrupt tag field in intr Ctrl (bits 19:12) always reflects the tag of last
USERINTERRUPT command processed. Asaresult of this behavior, early tags from multple
USERINTERRUPT commands may be lost. To avoid this behavior, software may force asingle
USERINTERRUPT command to be executed at atime by writing user Intr CM D(1:0)=0x3 and cause the
graphics engineto stall until the USERINTERRUPT interrupt is cleared.

Note that bit 5 of intr Ctrl must be set to 1 for user interrupts to be generated — writes to userIntrCM D
when intr Ctrl(5)=0 do not generate interrupts or cause the processing of commands to wait on clearing of
the USERINTERRUPT command (regardless of the data written to userIntr CM D), and are thusin effect
“dropped.”

8.33 colBuffer Addr

The colBuffer Addr register defines the base address of the color buffer. The the address must be 16-byte
aligned, so colBufferAddr[3:0] are unused.

Bit Description
3:0 reserved
234 Color Buffer Base Address. Must be 16-byte aligned

*** Need to add address equation ***

8.34 colBuffer Stride

If the color buffer is linear (colBufferStride[15]=0) then col BufferStride[13:0] defines the linear stride of
the color buffer in bytes. Linear stride must be 16-byte aligned. If the color buffer istiled
(colBufferStride[15]=1) then colBufferStride[6:0] defines the tile stride for the color buffer in tiles.

Bit Description
13:0 if [15] = 0 then
linear: [13:0] = linear stride in bytes
else
tiled: [6:0] = tile stride in tiles; [13:7] are reserved.
14 reserved
15 Memory type (O=linear; 1=tiled)

8.35 auxBuffer Addr

The auxBufferAddr register defines the base address of the auxiliary buffer. The existence and enabling of
the depth or the alpha auxiliary buffers is established within the fbzM ode register. AuxBufferAddr must
be 16 byte aligned, so auxBufferAddr[3:0] are unused.

Bit | Description

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 120 Updated 12/18/99



; Avenger High Performance Graphics Engine
\ !
3dfx
3:0

reserved

23:4 Auxiliary Buffer Base Address. Must be 16 byte aligned

*** Need to add address equation ***

8.36 auxBuffer Stride

If the aux buffer islinear (auxBufferStride][15]=0) then auxBufferStride[13:0] defines the linear stride of
the aux buffer in bytes. Linear stride must be 16-byte aligned. If the aux buffer istiled
(auxBufferStride] 15]=1) then auxBufferStride[6:0] defines the tile stride for the aux buffer in tiles.

Bit Description
13:0 if [15] = 0 then
linear: [13:0] = linear stride in bytes
else
tiled: [6:0] = tile stride in tiles; [13:7] are reserved.
14 reserved
15 Memory type (O=linear; 1=tiled)

8.37 clipLeftRight and clipLowYHighY Registers

The clip registers specify arectangle within which all drawing operations are confined. If a pixel isto be
drawn outside the clip rectangle, it will not be written into the RGB or depth buffers. Note that the
specified clipping rectangle defines avalid drawing areain both the RGB and depth/al pha buffers. The
valuesin the clipping registers are given in pixel units, and the valid drawing rectangle isinclusive of the
clipleft and clipLowY register values, but exclusive of the clipRight and clipHighY register values.
clipLowY must be less than clipHighY, and clipL eft must be less than clipRight. The clip registers can
be enabled by setting bit(0) in the fbzM ode register. When clipping is enabled, the bounding clipping
rectangle must always be less than or equal to the screen resolution in order to clip to screen coordinates.
Also note that if clipping is not enabled, rendering must not be specified to occur outside of the screen
resolution.

Important Note: The clipLowYHighY register is defined such that y=0 always resides at the top of the
monitor screen. Changing the value of the Y origin bits (fbzM ode bit(17) or IfbM ode bit(13)) has no
affect on the clipLowYHighY register orientation. Asaresult, if the Y origin is defined to be at the
bottom of the screen (by setting one of the Y origin bits), care must be taken in setting the
clipLowYHighY register to ensure proper functionality. In the case wheretheY origin is defined to be at
the bottom of the screen, the value of clipLowYHighY isusually set as the number of scan linesin the
monitor resolution minus the desired Y clipping values.

The clip registers are also used to define a rectangular region to be drawn during a FASTFILL command.
Note that when clipLowYHighY is used to specify arectangular region for the FASTFILL command, the
orientation of the Y origin (top or bottom of the screen) is defined by the status of fbzM ode bit(17). See
section 7 and the fastfill CM D register description for more information on the FASTFILL command.

clipL eftRight Register

Bit Description

11:0 Unsigned integer specifying right clipping rectangle edge

15:12 reserved

27:16 Unsigned integer specifying left clipping rectangle edge

31:28 reserved

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 121 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

clipLowYHighY Register

Bit Description

11:0 Unsigned integer specifying high Y clipping rectangle edge
15:12 reserved

27:16 Unsigned integer specifying low Y clipping rectangle edge
31:28 reserved

8.38 fogTable Register

The fogT able register is used to implement fog functions in Avenger. The fogT able register is a 64-entry
lookup table consisting of 8-bit fog blending factors and 8-bit Dfog blending values. The Dfog blending
values are the difference between successive fog blending factorsin fogT able and are used to blend
between fogT able entries. Note that the Dfog blending factors are stored in 6.2 format, while the fog
blending factors are stored in 8.0 format. For most applications, the 6.2 format Dfog blending factors will
have the two L SBs set to 0x0, with the six M SBs representing the difference between successive fog
blending factors. Also note that as aresult of the 6.2 format for the Dfog blending factors, the difference
between successive fog blending factors cannot exceed 63. When storing the fog blending factors, the sum
of each fog blending factor and Dfog blending factor pair must not exceed 255. When loading fogT able,
two fog table entries must be written concurrently in a 32-bit word. A total of 32 32-bit PCI writes are
required to load the entire fogT able register.

fogTable[n] (0£n £ 31)

Bit Description

7.0 FogTable[2n] DFog blending factor
15:8 FogTable[2n] Fog blending factor
23:16 FogTable[2n+1] DFog blending factor
31:24 FogTable[2n+1] Fog blending factor

8.39 fbiPixelsln Register

The fbiPixelsIn register is a 24-bit counter which isincremented for each pixel processed by the Avenger
triangle walking engine. fbiPixelsln isincremented irrespective if the triangle pixel is actually drawn or
not as aresult of the depth test, alphatest, etc. fbiPixelsin isused primarily for statistical information,
and in essence allows software to count the number of pixelsin a screen-space triangle. fbiPixelsin is
reset to Ox0 on power-up reset, and is reset when a“1’ if written to the Isb of nopCMD.

Bit Description

23.0 Pixel Counter (number of pixels processed by Avenger triangle engine)

8.40 fbiChromaFail Register

The fbiChromaFail register is a 24-bit counter which is incremented each time an incoming source pixel
(either from the triangle engine or linear frame buffer writes through the pixel pipeline) isinvalidated in
the pixel pipeline because of the chroma-key color match test. If an incoming source pixel color matches
the chomaK ey register, fbiChromaFail isincremented. fbiChromaFail isreset to 0xO on power-up
reset, and isreset when a*1’ if written to the Isb of nopCMD.

Bit Description
23.0 Pixel Counter (number of pixelsfailed chroma-key test)
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 122 Updated 12/18/99




df ; Avenger High Performance Graphics Engine
3 )
A

8.41 fhizfuncFail Register

The fbiZfuncFail register is a 24-bit counter which is incremented each time an incoming source pixel
(either from the triangle engine or linear frame buffer writes through the pixel pipeline) isinvalidated in
the pixel pipeline because of afailurein the Z test. The Z test is defined and enabled in the fbzM ode
register. fbiZfuncFail isreset to 0xO on power-up reset, and isreset when a*1’ if written to the Isb of
nopCMD.

Bit Description

23.0 Pixel Counter (number of pixelsfailed Z test)

8.42 fhiAfuncFail Register

The fbiAfuncFail register is a 24-bit counter which is incremented each time an incoming source pixel
(either from the triangle engine or linear frame buffer writes through the pixel pipeline) isinvalidated in
the pixel pipeline because of afailurein the alphatest. The alphatest is defined and enabled in the
alphaMode register. The fbiAfuncFail register is aso incremented if an incoming source pixel is
invalidated in the pixel pipeline as aresult of the alpha masking test (bit(13) in fbozM ode). fbiAfuncFail
isreset to Ox0 on power-up reset, and isreset when a‘1’ if written to the Isb of nopCMD.

Bit Description

23.0 Pixel Counter (number of pixelsfailed Alphatest)

8.43 fbiPixelsOut Register

The fbiPixelsOut register is a 24-bit counter which is incremented each time a pixel is written into a color
buffer during rendering operations (rendering operations include triangle commands, linear frame buffer
writes, and the FASTFILL command). Pixelstracked by fbiPixelsOut are therefore subject to the
chroma-test, Z test, Alphatest, etc. that are part of the regular Avenger pixel pipeline. fbiPixelsOut is
used to count the number of pixels actually drawn (as opposed to the number of pixels processed counted
by fbiPixelsln). Note that the RGB mask (fbzM ode bit(9) is ignored when determining fbiPixelsOut.
fbiPixelsOut isreset to 0x0 on power-up reset, and isreset when a‘1’ if written to the Isb of nopCMD.

Bit Description

23.0 Pixel Counter (number of pixels drawn to color buffer)

8.44 clipLeftRightl, clipTopBottom1 Registers

The clip0 and clipl registers specify two rectangular regions which restrict drawing operation. The
secondary clip rectangles may be defined as inclusive or exclusive through the clipMode field of the
clipTopBottom register. An inclusive rectangle allows drawing within the rectangle and an exclusive
rectangle disallows drawing within the rectangle. Drawing within an excluded region of either of the clip
rectangles circumvents the write of pixelsinto both the color and auxiliary buffers.

The clip registers define the four corners of arectangular region in window relative pixel coordinates
(native x/y rendering coordinates). The value of clipTop must be less than clipBottom and the value of
clipLeft must be less than clipRight. This programming results in a rectangular region including the
clipLeft and clipTop register values, but excluding the clipRight and clipBottom register values.

ClipLeftRight1 Register

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 123 Updated 12/18/99




Avenger High Performance Graphics Engine

L ¥
Bit Description
11:0 Unsigned integer specifying right clipping rectangle edge
15:12 reserved
27:16 Unsigned integer specifying left clipping rectangle edge
30:28 reserved
31 Clip Enable (O=disable, 1=enable

ClipLeftRight1 Register

Bit Description

11:0 Unsigned integer specifying top clipping rectangle edge
15:12 reserved

27:16 Unsigned integer specifying bottom clipping rectangle edge
30:28 reserved

31 Clip Mode (O=inclusive, 1=exclusive

8.45 swapBuffer Pend Register

Writes to the swapBuffer Pend register increments the swap buffer pending count of the Avenger status
register. Writes take effect immediately and are available only through direct access.

8.46 leftOverlayBuf Register

Starting address of left or Monocular buffer address for overlay display. For video overlay, the start
address needs to be aligned on a 32-bit boundary for YUV 422 pixel format and a 64-bit boundary for
YUV 411 pixel format. This register is sampled at the end of vertical retrace.

Bit Description

23.0 Starting address of the overlay surface buffer 0. The address is the physical address.

30:24 Reserved

31 Bit[31] indicatesif the buffer contains even or odd field in case of backend (Bob)
deinterlacing. Bit[31] = 1 for even field; Bit[31] = O for odd field.

8.47 RightOverlayBuf Register

Starting address of right buffer address for overlay display. For video overlay, the start address needs to
be aligned on a 32-bit boundary for YUV 422 pixel format and a 64-bit boundary for YUV 411 pixel
format. Thisregister isonly used for stereo buffering. Thisregister is sampled at the end of vertical
retrace.

Bit Description
23.0 Starting address of the overlay surface buffer 0. The address is the physical address.
31:24 Reserved

8.48 fbiSwapHistory Register

The fbiSwapHistory register keeps track of the number of vertical syncs which occur between executed
swap commands. fbiSwapHistory logs this information for the last 8 executed swap commands. Upon
completion of a swap command, fbiSwapHistory bits (27:0) are shifted left by four bits to form the new
fbiSwapHistory bits (31:4), which maintains a history of the number of vertical syncs between execution
of each swap command for the last 7 frames. Then, fbiSwapHistory bits(3:0) are updated with the
number of vertical syncs which occurred between the last swap command and the just completed swap
command or the value Oxf, whichever is less.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 124 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

Bit Description

3.0 Number of vertical syncs between the second most recently completed swap command
and the most recently completed swap command, or the value Oxf, whichever isless for
Frame N.

7:4 Vertical sync swapbuffer history for Frame N-1

11:8 Vertical sync swapbuffer history for Frame N-2

15:12 Vertical sync swapbuffer history for Frame N-3

19:16 Vertical sync swapbuffer history for Frame N-4

23:20 Vertical sync swapbuffer history for Frame N-5

2724 Vertical sync swapbuffer history for Frame N-6

31:28 Vertical sync swapbuffer history for Frame N-7

8.49 fbiTrianglesOut Register

The fbiTriangles register is a 24-bit counter which is incremented for each triangle processed by the
Avenger triangle walking engine. Triangles which are backface culled in the triangle setup unit do not
increment fhiTrianglesOut. fbiTrianglesOut isreset to 0xO on power-up reset, and is also reset to 0x0
whena'l’ iswritten to nopCMD bit(1).

Bit Description
23.0 Rendered triangles (total number of triangles rendered by Avenger triangle rendering
engine)

8.50 sSetupMode Register

The sSetupM ode register provides away for the CPU to only setup required parameters. When aBit is
set, that parameter will be calculated in the setup process, otherwise the value is not passed down to the
triangle, and the previous value will be used. Also the definition of the triangle strip is defined in bits
21:16, where bit 16 definesfan. Culling is enabled by seting bit 17 to a value of “1”, whereas bit 18
defines the culling sign. Bit 19 disables the ping pong sign inversion that happens during triangle strips.

Bit Description

0 Setup Red, Green, and Blue

1 Setup Alpha

2 Setup Z

3 Setup Wh

4 Setup WO

5 Setup SOand TO

6 Setup W1

7 SetupSland T1

15:8 reserved

16 Strip mode (O=strip, 1=fan)

17 Enable Culling (O=disable, 1=enable)

18 Culling Sign (O=positive sign, 1=negative sign)

19 Disable ping pong sign correction during triangle strips (O=normal, 1=disable)
Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 125 Updated 12/18/99




df Avenger High Performance Graphics Engine
3 )
4.

8.51 Triangle Setup Vertex Registers

The sVx, sVy registers specify the x and y coordinates of atriangle strip to be rendered. A triangle strip,
once the initial triangle has been defined, only requiresanew X and Y to render consecutive triangles.
The diagram below illustrates how triangle strips are sent over to Avenger.

D1 D3 D3
D2
D5
5
6
1
D4 D1
D2
R R
Triangle Strip Triangle Fan

Triangle strips and triangle fans are implemented in Avenger by common vertex information and 2
triangle commands. Vertex information is written to Avenger for a current vertex and are followed by a
write to either the sBeginTriCMD or the sDrawTriCMD . For example, to render the triangle strip in the
above figure, parameters X, Y, ARGB, W0, S/W, T/W for vertex R would be written followed by awrite
to sBeginTriCMD. Vertex D1's parameters would next be written followed by awrite to the
sDrawTriCMD. After D2's data has been sent, and the 2™ write to sDrawTriCMD has been completed
Avenger will begin to render triangle 1. Astriangle 1 is being rendered, data for vertex D3 will be sent
down followed by another write to sDrawTriCMD, thus launching another triangle. Triangle fans are
very similar to triangle strips. Instead of changing all three vertices, only the last 2 get modified.
Triangle fans start with a sBeginTriCMD just as the triangle strip did, and send down sDrawTriCMD for
every new vertex. To select triangle fan or triangle strip, you must write bit 0 of the triangle setup mode
register.

SVx Register

Bit Description

31:0 Vertex coordinate information (1EEE 32 bit single-precision floating point format)
sVy Register

Bit Description

31:.0 Vertex coordinate information (1EEE 32 bit single-precision floating point format)

8.52 sSARGB Register
The ARGB register specify the color at the current vertex in a packed 32 bit value.

Bit Description

31:24 Alpha Color

23:16 Red Color

15:8 Green Color

7:0 Blue Color

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 126 Updated 12/18/99




3dfx

Avenger High Performance Graphics Engine

8.53 sRed Register
the sRed register is the separated red value for the current vertex.

Bit

Description

31.0

Red value at vertex (0.0 - 255.0). (IEEE 32 hit single-precision floating point format)

8.54 sGreen Register
The sGreen register is the separated green value for the current vertex.

Bit

Description

31.0

Green value at vertex (0.0 - 255.0). (IEEE 32 bit single-precision floating point format)

8.55 sBlue Register
The sBlue register is the separated blue value for the current vertex.

Bit

Description

31.0

Blue value at vertex (0.0 - 255.0). (IEEE 32 bit single-precision floating point format)

8.56 sAlpha Register
the sAlpharegister is the separated alpha value for the current vertex.

Bit

Description

31.0

Alphavalue at vertex (0.0 - 255.0). (IEEE 32 bit single-precision floating point format)

8.57 sVz Register
The Vz register is the Z value at the current vertex.

Bit

Description

31.0

Vertex coordinate information (1EEE 32 bit single-precision floating point format)

8.58 sWb Register
The Wb register isaglobal /W that is sent to both the FBI and all TMUs.

Bit

Description

31.0

Glaobal 1/W. (IEEE 32 hit single-precision floating point format).

8.59 sWtmuO Register
The swWtmuO register is all the TMUslocal /W value for the current vertex.

Bit

| Description

Copyright O 1996-1997 3Dfx Interactive, Inc.

Proprietary

Revision 0.97
127 Updated 12/18/99




3dfx

| 31:0

Avenger High Performance Graphics Engine

| Texture local 1/W. (IEEE 32 bit single-precision floating point format)

8.60 sS'WO0 Register
The S/WO register isthe S coordinate of the current vertex divided by W, for all TMUs.

Bit

Description

31.0

Texture S coordinate (IEEE 32 hit single-precision floating point format)

8.61 sT/WO Register

The T/W register sthe T coordinate of the current vertex divided by W, for all TMUs.
Bit Description
31:.0 Texture T coordinate (IEEE 32 bit single-precision floating point format)

8.62 sWtmul Register
The sWtmul register is TMU21'slocal /W value for the current vertex.

Bit

Description

31.0

Texture local 1/W. (IEEE 32 bit single-precision floating point format)

8.63 sS'Wtmul Register
The sS'Wtmul register is TMU1’slocal S/W value for the current vertex.

Bit

Description

31.0

Texture local 1/W. (IEEE 32 bit single-precision floating point format)

8.64 sT/Wtmul Register
The sT/Wtmul register is TMU1’slocal T/W value for the current vertex.

Bit

Description

31.0

Texture local 1/W. (IEEE 32 bit single-precision floating point format)

8.65 sDrawTriCMD Register
The DrawTriCMD registers starts the draw process.

Bit

Description

0

Draw triangle

8.66 sBeginTriCMD Register
A write to this register begins a new triangle strip starting with the current vertex. No actual drawing is

performed.
Bit Description
0 Begin New triangle

Copyright O 1996-1997 3Dfx Interactive, Inc.

Proprietary

Revision 0.97

128 Updated 12/18/99




df Avenger High Performance Graphics Engine
3 |
4.

The Folowing two figures are sample pseudo code for generating triangle strips and fans.

Setup Code
| packed color triangle strip setup.

| Begin triangle setup

I Vetex #0

write (St=>9Vx, -30.0);

write (St=>9Vvy, 15.0);

write (St->sARGB, OxHF010203); // Color

write (st->sSw, 4.0);

write (st->sTw, 2.0);

write (st->BegintriCMD, 0); /I Begin Triangle

[ vertex #1

write (st->sVx, 5.0);

write (st=>9Vvy, 10.0);

write (St->sARGB, O0x00052377);
write (st->sSw, 30.0);

write (st->sTw, 60.0);

write (st->DrantriCMD, 0);

I Vertex #2

write (st->sVx, 50.0);

write (st->sVvy, 100.0);

write (St->sARGB, 0x12345679);

write (st=>sSw, 100.0);

write (st->sTw, 200.0);

write (st->DrantriCMD, 0); /I Draw firg triangle

I Vetex #3

write (st->sVx, 50.0);

write (st=>sVvy, 0.0);

write (St->sARGB, Ox87654321);

write (st->sSw, 0.0);

write (st->sTw, 200.0);

write (st->DrantriCMD, 0); /I Draw second triangle

| Vertex #4

write (st->svx, 100.0);

write (st->sVvy, 100.0);

write (St->sARGB, 0x0);

write (st->sSw, 200.0);

write (st->sTw, 150.0);

write (st->DrantriCMD, 0); /I Draw second triangle

write (s8->sSetupMode, PACKEDCOLOR | SETUP XY | SETUP RGB | SETUP ALPHA | SETUP ST);

Copyright O 1996-1997 3Dfx Interactive, Inc.
Proprietary 129

Revision 0.97
Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
.

| Separate Color triangle fan setup

| Vertex #0
write (sst->sVx, -30.0);
write (sst->sVy, 15.0);
write (sst->sRed, 0.0);
write (sst->sGreen, 0.0);
write (sst->sBlue, 0.0);
write (sst->sBegintriCMD, 0); /I Begin Triangle

| vertex #1

write (sst->sVx, 5.0);

write (sst->sVy, 10.0);

write (sst->sRed, 255.0);
write (sst->sGreen, 0.0);

write (sst->sBlue, 0.0);

write (sst->sDrawTriCMD, 0);

| Vertex #2

write (sst->sV'x, 50.0);

write (sst->sVy, 100.0);

write (sst->sRed, 0.0);

write (sst->sGreen, 255.0);

write (sst->sBlue, 0.0);

write (sst->sDrawTriCMD, 0); /I Draw first triangle

| Vertex #3
write (sst->sV'x, 50.0);
write (sst->sVy, 0.0);
write (sst->sRed, 0.0);
write (sst->sGreen, 0.0);
write (sst->sBlue, 255.0);
write (sst->sDraw TriCMD, 0); /I Draw second triangle

| Vertex #4

write (sst->sVx, 100.0);

write (sst->sVy, 100.0);

write (sst->sRed, 255.0);

write (sst->sGreen, 255.0);

write (sst->sBlue, 0.0);

write (sst->sDraw TriCMD, 0); /I Draw second triangle

write (sst->sSetupMode, FANMODE | SETUP_XY | SETUP_RGB);

8.67 textureMode Register

The textureM ode register controls texture mapping functionality including perspective correction, texture

filtering, texture clamping, and multiple texture blending.

Bit Name Description

0 tpersp_st Enable perspective correction for Sand T iterators (O=linear interploation of ST, force

W to 1.0, 1=perspective correct, S'\W, T/W)

Copyright O 1996-1997 3Dfx Interactive, Inc.

Proprietary 130

Revision 0.97
Updated 12/18/99




Avenger High Performance Graphics Engine

\J
.

1 tminfilter Texture minification filter (O=point-sampled, 1=bilinear)

2 tmagfilter Texture magnification filter (O=point-sampled, 1=bilinear)

3 tclampw Clamp when W is negative (O=disabled, 1=force S=0, T=0 when W is negative)

4 tloddither Enable Level-of-Detail dithering (0=no dither, 1=dither)

5 tncesel ect Narrow Channel Compressed (NCC) Table Select (O=table 0, 1=table 1)

6 tclamps Clamp S Iterator (O=wrap, 1=clamp)

7 tclampt Clamp T lterator (O=wrap, 1=clamp)

11:8 tformat Texture format (see table below)
Texture Color Combine Unit control (RGB):

12 tc zero other Zero Other (O=c_other, 1=zero)

13 tc sub clocal Subtract Color Local (0=zero, 1=c_local)

16:14 | tc_mselect Mux Select (0O=zero, 1=c_local, 2=a other, 3=a local, 4=LOD, 5=LOD _frac, 6-
7=reserved)

17 tc reverse blend Reverse Blend (O=normal blend, 1=reverse blend)

18 tc add clocal Add Color Loca

19 tc add alocal Add AlphaLocal

20 tc_invert output Invert Output
Texture Alpha Combine Unit control (A):

21 tca_zero other Zero Other (O=c_other, 1=zero)

22 tca_sub clocal Subtract Color Local (0=zero, 1=c_local)

25:23 | tca_mselect Mux Select (0=zero, 1=c_local, 2=a other, 3=a local, 4=LOD, 5=LOD_frac, 6-
7=reserved)

26 tca_reverse blen Reverse Blend (O=normal blend, 1=reverse blend)

d

27 tca_add clocal Add Color Loca

28 tca_add alocal Add AlphaLocal

29 tca_invert output | Invert Output

30 trilinear Enable trilinear texture mapping (O=point-sampled/bilinear, 1=trilinear)

tpersp_st bit of textureM ode enables perspective correction for Sand T iterators. Note that thereis no
performance penalty for performing perspective corrected texture mapping.

tminfilter, tmagfilter bits of textureM ode specify the filtering operation to be performed. When point
sampled filtering is selected, the texel specified by <s,t> is read from texture memory. When bilinear
filtering is selected, the four closet texelsto a given <s,t> are read from memory and blended together as a
function of the fractional components of <s,t>. tminfilter is referenced when LOD>=LODmin, otherwise
tmadfilter is referenced.

tclampw bit of textureM ode is used when projecting textures to avoid projecting behind the source of the
projection. If thishitisset, S, T are each forced to zero when W is negative. Though usually desireable, it
is not necessary to set this bit when doing projected textures.

tloddither bit of textureM ode enables Level-of-Detail (LOD) dither. Dithering the LOD calculation is
useful when performing texture mipmapping to remove the LOD bands which can occur from with
mipmapping without trilinear filtering. This adds an average of 3/8 (.375) to the LOD value and needs to
compensated in the amount of lodbias.

tnceselect bit of textureM ode selects the NCC lookup table to be used when decompressing 8-bit NCC

textures.

Copyright O 1996-1997 3Dfx Interactive, Inc.

Proprietary

Revision 0.97

131 Updated 12/18/99




3dfy

Avenger High Performance Graphics Engine

tclamps, tclampt bits of textureM ode enable clamping of the Sand T texture iterators. When clamping
is enabled, the Siterator is clamped to [0, texture width) and the T iterator is clamped to [0, texture
height). When clamping is disabled, S coordinates outside of [0, texture width) are allowed to wrap into
the [0, texture width) range using bit truncation. Similarly when clamping is disabled, T coordinates
outside of [0, texture height) are allowed to wrap into the [0, texture height) range using bit truncation.

tformat field of textureM ode specifies the texture format accessed by TREX. Note that the texture format
field is used for both reading and writing of texture memory. The following table shows the texture
formats and how the texture data is expanded into 32-bit ARGB color:

tforma Texture format 8-bit Alpha 8-bit Red 8-bit Green 8-bit Blue
t Value
0 8-bit RGB (3-3-2) Oxff {r[2:0],r[2:0],r[2:1]} {g[2:0],9[2:0],9[2:1]} {b[1:0],b[1:0],b[1:0],b[1:0]}
1 8-bit YIQ (4-2-2) See below
2 8-bit Alpha a[7:0] a[7:0] a[7:0] a[7:0]
3 8-bit Intensity Oxff i [7:0] i[7:0] i[7:0]
4 8-bit Alpha, Intensity (4-4) {a[3:0],a[3:0]} {i[3:0],i[3:0]} {i[3:0],i[3:0]} {i[3:0],i[3:0]}
5 8-bit Palette to RGB Oxff paletter[7:0] palette g[7:0] palette b[7:0]
6 8 bit Palette to RGBA {palette r[7:2], {palette r[1:0], {palette g[3:0], { palette_b[5:0],
palette r[7:6] palette g[7:4], palette b[7:6], palette b[5:4]}
palette r[1:0]} palette g[3:2]}
7 Reserved
8 16-bit ARGB (8-3-3-2) a[7:0] {r[2:0],r[2:0],r[2:1]} {g[2:0],9[2:0],9[2:1]} {b[1:0],b[1:0],b[1:0],b[1:0]}
9 16-hit AY1Q (8-4-2-2) See below
10 16-bit RGB (5-6-5) Oxff {r[4:0],r[4:2]} {g[5:0],r[5:41} {b[4:0],b[4:2]}
11 16-bit ARGB (1-5-5-5) {a[0],a[0],a[0],a[0], {r[4:0],r[4:2]} {9[4:0],9[4:2]} {b[4:0],b[4:2]}
2[0],80],2[0],2[0]}
12 16-bit ARGB (4-4-4-4) {a[3:0},a[3:0]} {r[3:0},r[3:01} {g[3:0},0[3:01} {b[3:0},b[3:0]}
13 16-hit Alpha, Intensity (8-8) a[7:0] i[7:0] i[7:0] i[7:0]
14 16-hit Alpha, Palette (8-8) a7:0] paletter[7:0] palette g[7:0] palette b[7:0]
15 Reserved

where a, r, g, b, and i(intensity) represent the actual values read from texture memory. The following
table shows how 32-hit RGBA texture information is derived from the Y1Q texture formats. Thisis
detailed later in the nccTable description.

Textureformat 8-bit Alpha 8-bit Red 8-bit Green 8-bit Blue
8-hit YIQ (4-2-2) Oxff ncc _red[7:0] ncc _green[7:0] ncc_blue[7:0]
16-bit AY1Q (8-4-2-2) a7:0] ncc _red[7:0] ncc _green[7:0] ncc _blue[7:0]

There are three Texture Color Combine Units (RGB) and one Texture Alpha Combine Unit(A), all four
areidentical, except for the bit fields that control them. Thetc_* fields of textureM ode control the

Texture Color Combine Units; the tca_* fields control the Texture Alpha Combine Units. The diagram
below illustrates the Texture Color Combine Unit/Texture Alpha Combine Unit:

Copyright O 1996-1997 3Dfx Interactive, Inc.
Proprietary

132

Revision 0.97

Updated 12/18/99




df Avenger High Performance Graphics Engine
3 \
A

tc/tca sub _c local

tc/tca_c_other

Blend with Incoming Color

cal

By

8 0.8.0

0
c lo
0 1 tc/tca zero other
0

8

a other
a local
detail factor

[0,0x100]

9 180

9 signed x
9 unsigned
multiply

Trunc. LSBs 9 1.80 8

No Round

a local +1

0 1 9090

18
"/
101.9.0

tc/tca_invert_output 8

\/I

8 Color
0.8

LODB_frac[7:0]

00 01 10/__ {tc/tca_add_c_local, tc/tca_add_a local}

tc/tca reverse blend

For trilinear:
0: odd TREX
1. even TREX

trilinear_enable

Y LODB[0]

U

tc/tca_ mselect[2:0]

alpha_inv

Combinedin
common unit

Unique for ar,g,b

tc_ prefix appliesto R,G and B channels. tca_ prefix appliesto A channel.

8.68 tLOD Register
The tLOD register controls the texture mapping LOD calculations.

Bit

Name

Description

5.0

lodmin

Minimum LOD. (4.2 unsigned)

Copyright O 1996-1997 3Dfx Interactive, Inc.
Proprietary

133

Revision 0.97
Updated 12/18/99




Avenger High Performance Graphics Engine

11:6 lodmax Maximum LOD. (4.2 unsigned)

17:12 | lodbias LOD Bias. (4.2 signed)

18 lod_odd LOD odd (O=even, 1=o0dd)

19 lod_tsplit Textureis Split. (O=texture containsall LOD levels, 1=odd or even levels only, as
controlled by lod odd)

20 lod_s is wider | Sdimension iswider, for rectilinear texture maps. Thisisadon’t care for square
textures. (1=Siswider than T).

22:21 | lod_aspect Aspect ratio. Equal to 2*n. (00 is square texture, others are rectilinear: 01 is
2x1/1x2, 10 is 4x1/1x4, 10 is 8x1/1x8)

23 lod_zerofrac LOD zero frac, useful for bilinear when even and odd levels are split across two

TREXs (O=normal LOD frac, 1=force fraction to 0)

24 tmultibaseaddr | Use multiple texbaseAddr registers

25 tdata swizzle Byte swap incoming texture data (bytes 0<->3, 1<->2).
26 tdata swap Short swap incoming texture data (shorts 0<->1).

27 reserved used to be tdirect write in Voodoo graphics.

28 tmirrors Mirror texturein S dimension

29 tmirrort Mirror texturein T dimension

lodbias is added to the calculated LOD value, then it is clamped to the range [lodmin, min(8.0, lodmax)].
Note that whether the LOD is clamped to lodmin is used to determine whether to use the minification or
magnification filter, selected by the tminfilter and tmadfilter bits of textureM ode:

L OD bias, clam

LODmin LODmax

| |
- N [ ! » o0
0 8
256x256 1x1
—0
tmagfilter >
tminfilter

The tdata_swizzle and tdata_swap bitsin tL OD are used to modify incoming texture data for endian
dependencies. The tdata_swizze bit causes incoming texture data bytes to be byte order reversed, such
that bits(31:24) are swapped with bits(7:0), and bits(23:16) are swapped with bits(15:8). Short-word
swapping is performed after byte order swizzling, and is selected by the tdata_swap bit in tLOD. When
enabled, short-word swapping causes the post-swizzled 16-bit shorts to be order reversed, such that
bits(31:16) are swapped with bits(15:0). The following diagram shows the data manipulation functions
perfomed by the tdata_swizze and tdata_swap bits:

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 134 Updated 12/18/99




d f Avenger High Performance Graphics Engine
3 \ !
A

Incoming Texture Data

32

y

1 0 (Bytes 0-3)

ECNI

3
8

| -

— 7

01/ 01 1 tdata_swizzle

1 0 (Shorts 0-1)

16

16 M

01 10 tdata_swap

Texture Memory Texture Memory
Data[31:16] Data[15:0]

8.69 tDetail Register
The tDetail register controls the detail texture.

Bit Name Description
7:0 detail _max Detail texture LOD clamp (8.0 unsigned)
13:8 detail bias Detail texture bias (6.0 signed)
16:14 | detail scale Detail texture scale shift left
17 rgb_tminfilter RGB texture minification filter(0 = point-sampled, 1 = bilinear)
18 rgb_tmagfilter RGB texture magnification filter(0 = point-sampled, 1 = bilinear)
19 a_tminfilter Alphatexture minification filter(0 = point-sampled, 1 = bilinear)
20 a_tmagfilter Alpha texture magnification filter(0 = point-sampled, 1 = bilinear)
21 rgb_a separate filte | 0 =tminfilter and tmagfilter of textureMode define the filter for
r RGBA
1 =rgb_tminfilter and rgb_tmagfilter define the filter for RGB,
a tminfilter and a_tmagfilter define the filter for alpha.

detail_factor is used in the Texture Combine Unit to blend between the main texture and the detail
texture.
detail_factor (0.8 unsigned) = max(detail_max, ((detail_bias - LOD) << detail_scale)).

When rgh_a_separate filter is set, rgb_tminfilter and rgb_tmagfilter are used for RGB filtering and
a_tminfilter and a_tmagfilter are used for A filtering.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 135 Updated 12/18/99




Avenger High Performance Graphics Engine

3dfy

8.70 texBaseAddr, texBaseAddr 1, texBaseAddr2, and texBaseAddr 38 Registers

The texBaseAddr register specifies the starting texture memory address for accessing atexture. It isused
for both rendering and texture downloading. Calculation of the texBaseAddr is described in the Texture
Memory Access section. Selection of the base address is afunction of tmultibaseaddr and LODBI.

texBaseAddr[23:4] indicates the base address of the texture in 16-bytes units. If the texture istiled
(texBaseAddr[0]=1), then texBaseAddr[31:25] indicate the tile stride.

texBaseAddr
Bit Name Description
0 texmemtype Texture Memory type (O=linear, 1=tiled)

31 reserved

234 texbaseaddr

Texture Memory Base Address, in 16-byte units, tmultibaseaddr==0 or
LODBI==

24 reserved

31:25 | texstride

Tile stride (0 to 127 tiles).

texBaseAddr 1, texBaseAddr 2, texBaseAddr 38 indicate the base addresses of lods 1, 2 and 3-8 in 16
byte units, if tmultibaseaddr=1.

texBaseAddr 1, texBaseAddr 2, texBaseAddr 38

Bit Name

Description

23:4 | texbaseaddrl

Texture Memory Base Address, tmultibaseaddr==1 and L ODBI==1

23:4 | texbaseaddr2

Texture Memory Base Address, tmultibaseaddr==1 and LODBI==

23:4 | texbaseaddr38

Texture Memory Base Address, tmultibaseaddr==1 and L ODBI>=3

8.71 trexinitl Register

The trexInitl register is used for hardware initialization and configuration of the TREX portion of H3.

Bit Name Description
0 rsv. s int slave reserved
1 rsv g int en reserved

6:2 | ft_FIFO s

FBI-to-TREX interface FIFO stall input level. Free space level at which stall
signal is sent back to transmitting chip.

107 | tt_FIFO_ sl

TREX-to-TREX interface FIFO stall input level. Free space level at which
stall signal is sent back to transmitting chip.

11 reserved

15:12 | tf_ck_del_adj

TREX-to-FBI interface clock delay adjust. Adjusts phase of the transmit clock.

16 rg_ttcii_inh

Register ttcii inhibit. when use rg_ttcii_inh==1. O=expect data from upstream
TREX, 1=ignore data from upstream TREX.

17 use rg_ttcii_inh

Use register ttcii inhibit to chose if data is expected from upstream TREX.
O=use clock sense result, 1=ignore clock sense result and userg_ttcii_inh.

18 send_config

Send config. Transmit configuration to FBI through the tf_ interface instead of
texel data. O=normal, 1=send.

19 reset FIFOs

Reset all of the FIFO'sinside TREX. O=run, 1=assert the reset signal.

20 reset_graphics

Reset al of the graphicsinside TREX. O=run, 1=assert the reset signal.

22:21 | rsv_palette del

reserved

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary

136 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

25:23 | send_config_sel Send config select. (not revision 0) Selects which data to transmit to FBI when
send_config==1.

000=reserved

001=reserved

010=reserved

011=trexInitl,

100=texBaseAddr[31:0], (for thisfunction, 32 bits are retained and is non-maskable)
101,110,111=reserved.

26 use 4bit st frac 1=use 4 bits for s;t instead of 8. Default = 0.

27 a attr_set_only 1=use only the A set of triangle attributes. Default = 0.
28 nop_per_tri 1=insert a nop per triangle. Default = 0.

29 always _cache inv 1=always cache invalidate each triangle. Default = 0.

30 always 4texel needed | 1=always indicate that 4 texels are needed for each pixel. Default = 0.

send config
It is possible to read trexInitl and texBaseAddr through the the send_config path, which sends these

registers over to the FBI section of H3 viathe graphics tf bus. When send_config = 1,
tf_data[31:0] ={&7:0], r[7:0], g[7:0], b[7:0]}. TREX’s TC/TCA must be set to pass c_other.

8.72 nccTable0 and nccTablel Registers

The nccTable0 and nccT ablel registers contain two Narrow Channel Compression (NCC) tables used to
store lookup values for compressed textures (used in Y1Q and AY1Q texture formats as specified in
tformat of textureM ode). Two tables are stored so that they can be swapped on a per-triangle basis when
performing multi-pass rendering, thus avoiding a new download of the table. Use of either nccTableO or
nccT ablel is selected by the Narrow Channel Compressed (NCC) Table Select bit of textureM ode.

nccT able0 and nccTablel are stored in the format of the table below, and are write only.

nccTable Address | Bits [ Contents

0 310 | {Y3[7:0], Y2[7:Q], Y1[7:0], YO[7:0]}
1 310 | {Y7[7:0], Y6[7:Q], Y5[7:0], Y4[7:0]}
2 310 | {YDb[7:0], Y& 7:0], YO9[7:Q], Y§7:0]}
3 310 | {Yf[7:0], YE[7:0], YO[7:Q], Y[7:0]}
4 26:0 | {10 r[8:0], 10 g[8:0], 10 b[8:0]}

5 26:0 | {I1 r[8:0], 11 g[8:0], 11 b[8:0]}

6 26:0 | {12 r[8:0], 12 g[8:0], 12 b[8:0]}

7 26:0 | {13 r[8:0], 13 g[8:0], I3 b[8:0]}

8 26:0 | {QO0 r[8:0], Q0 _g[8:0], Q0 b[8:0]}

9 26:0 | {Q1 r[8:0], Q1 g[8:0], QL b[8:0]}
10 26:0 | {Q2 r[8:0], Q2 ¢[8:0], Q2 b[8:0]}
11 26:0 | {Q3 r[8:0], Q3 g[8:0], Q3 b[8:0]}

The following figure illustrates how compressed textures are decompressed using the NCC tables:

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 137 Updated 12/18/99




df | Avenger High Performance Graphics Engine
3 )
A

nccTable register From Memory Data Alignment

Select
+ 4y + 21 iZQ
2x16)x8 Lookup 2x4)x27 Lookup 2x4)x27 Lookup
RAM RAM RAM

8 27 27

8.73 8-bit Palette

The 8-bit palette is used for 8-bit P and 16-bit AP modes. The palette is loaded with register writes.
During rendering, four texels are looked up simultaneously, each an independent 8-bit address.
Palette Write

The palette is written through the NCC table 0 | and Q register space when the MSB of the register write
datais set. The NCC tables are not written when the | or Q NCC table register space is addressed and
MSB of the register write datais set to 1 — Instead the data is stored in the texture pal ette.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 138 Updated 12/18/99



) Avenger High Performance Graphics Engine

Palette L oad M echanism

Register
Address LSB of P Register Write Data
31 0

nccTable0 10 P[0]=0 1 P[7:1] R[7:0] G[7:0] B[7:0]
nccTableO 11 P[0]=1 1 P[7:1] R[7:0] G[7:0] B[7:0]
nccTableO 12 P[0]=0 1 P[7:1] R[7:0] G[7:0] B[7:0]
nccTableO 13 P[0]=1 1 P[7:1] R[7:0] G[7:0] B[7:0]
nccTabled Q0 P[0]=0 1 P[7:1] R[7:0] G[7:0] B[7:0]
nccTabled Q1 P[0]=1 1 P[7:1] R[7:0] G[7:0] B[7:0]
nccTabled Q2  P[0]=0 1 P[7:1] R[7:0] G[7:0] B[7:0]
nccTabled Q3 P[0]=1 1 P[7:1] R[7:0] G[7:0] B[7:0]

Note that the even addresses alias to the same location, as well as the odd ones. It is recommended that
the table be written as 32 sets of 8 so that PCI bursts can be 8 transfers long.

8.74 Command Descriptions

8.74.1 NOP Command

The NOP command is used to flush the graphics pipeline. When a NOP command is executed, all
pending commands and writes to the texture and frame buffers are flushed and completed, and the
graphics engine returnsto its IDLE state. While this command is used primarily for debugging and
verification purposes, it is also used to clear the 3D status registers (fhiTriangles, fbiPixelsin,
fbiPixelsOut, fbiChromaFail, fhiZfuncFail, and fbiAfuncFail). Setting nopCMD bit(0)=1 clears the
3D status registers and flushes the graphics pipeline, while setting nopCM D bit(0)=0 has no affect on the
3D status registers but flushes the graphics pipeline. See the description of the nopCMD register in
section 5 for more information.

8.74.2 TRIANGLE Command
TOBE COMPLETED.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 139 Updated 12/18/99



d f Avenger High Performance Graphics Engine
3 \ !
A

8.74.3 FASTFILL Command

The FASTFILL command is used for screen clears. When the FASTFILL command is executed, the
depth-buffer comparison, aphatest, alpha blending, and all other special effects are bypassed and
disabled. The FASTFILL command uses the status of the RGB write mask (bit(9) of fbzM ode) and the
depth-buffer write mask (bit(10) of fbzM ode) to access the RGB/depth-buffer memory. The FASTFILL
command also uses hits (15:14) of fbzM ode to determine which RGB buffer (front or back) is written.
Prior to executing the FASTFILL command, the clipL eftRight and clipLowYHighY registers must be
loaded with a rectanglar area which is desired to be cleared -- -- the fastfillCM D register is then written
toinitiate the FASTFILL command. Note that clip registers define arectangular area which isinclusive
of the clipL eft and clipLowY register values, but exclusive of the clipRight and clipHighY register
values. Note also that the relative position of the Y origin (either top of bottom of the screen) is defined
by fbzM ode bit(17). The 24-bit color specified in the Color 1 register iswritten to the RGB buffer (with
optional dithering as specified by bit(8) of fbzM ode), and the depth value specified in bits(15:0) of the
zaColor register iswritten to the depth buffer. See the description of the fastfillCM D register in section
5 for more information.

8.74.4 SWAPBUFFER Command

The SWAPBUFFER command is used to swap the drawing buffers to enable smooth animation. Since the
SWAPBUFFER command is executed and queued like al other 2D and 3D commands, proper order is
maintained and software does not have to poll and wait for vertical retrace to manually swap buffers —this
frees the CPU to perform other functions while the graphics engine automatically waits for vertical

retrace. When the SWAPBUFFER command is executed, swapbuffer CM D bit(0) determines whether the
drawing buffer swapping is synchronized with vertical retrace. Typically, it isdesired that buffer
swapping be synchronized with vertical retrace to eliminate frame “tearing” typically found on single
buffered displays. If vertical retrace synchronization is enabled for double buffered applications, the
graphics command processor blocks on a SWAPBUFFER command until the monitor vertical retrace
signal is active. If the number of vertical retraces seen exceeds the value stored in bits(8:1) of

swapbuffer CM D, then the pointer used by the monitor refresh control logic is changed to point to

another drawing buffer. If vertical retrace synchronization is enabled for triple buffered applications, the
graphics processor does not block on a SWAPBUFFER command. Instead, aflag is set in the monitor
refresh control logic that automatically causes the data pointer to be modified in the monitor refresh
control logic during the next active vertical retrace period. Using triple buffering allows rendering
operations to occur without waiting for the vertical retrace active period.

The swapbuffer CM D must be proceeded by a direct write of the swapPend register. A writeto the
swapPend register increments the swap buffers pending field in the status registers. Conversely, when an
actual frame buffer swapping occurs, the swap buffers pending field in the status register is decremented.
The swap buffers pending field allows software to determine how many SWAPBUFFER commands are
present in the Avenger FIFOs. See the descript of the swapbuffer CM D register in section 5 for more
information.

Since Avenger does not have fixed color buffer locations, 2 new registers are required for buffer display.
L eftOverlayBuf and rightOverlayBuf are used by the video scanout section to determine the location of
the current display buffer. The sequence of writes for double buffering would consist of writing to the
leftOverlayBuf register and optionally the rightOverlayBuf (for stereo operations), followed by a direct
write of swapPend, ending with awrite to swapbuffer CM D register. The leftOverlayBuf and
rightOverlayBuf registers are fifoed, allowing tripple and quad buffering.

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 140 Updated 12/18/99



df ; Avenger High Performance Graphics Engine
3 )
A

8.74.5 USERINTERRUPT Command

The USERINTERRUPT command allows for software-generated interrupts. A USERINTERRUPT
command is generated by writing to the user Intr CM D register. userIntr CMD hit(0) controls whether a
write to user IntrCM D generates a USERINTERRUPT. Setting userIntr CM D bit(0)=1 generates a
USERINTERRUPT. userintrCMD bhit(1) determines whether the graphics engine stalls on software
clearing of the user interrupt. By setting userIntr CM D bit(1)=1, the graphics engine stalls until the
USERINTERRUPT iscleared. Alternatively, setting userlntr CM D bit(1)=0 does not stall the graphics
engine upon execution of the USERINTERRUPT command, and additional graphics commands are
processed without waiting for clearing of the user interrupt. A identification, or Tag, is also associated
with an individual USERINTERRUPT command, and is specified by writing an 8-bit value to

user I ntr CMD bits(9:2).

User interrupts must be enabled before writes to the user Intr CM D are alowed by setting intr Ctrl
bit(5)=1. Writesto userIntr CMD when intr Ctrl bit(5)=0 are “dropped” and do not affect functionality.
A user interrupt is detected by reading intr Ctrl bit (11), and is cleared by setting intr Ctrl bit(11)=0. The
tag of a generated user interrupt is read from intr Ctrl bits (19:12). See the description of the intr Ctrl
and userIntr CM D registersin section 5 for more information.

8.75 Linear Frame Buffer Access (* FIX THIS*)

The Avenger linear frame buffer base address is located at a 8 Mbyte offset from the memBaseAddr PCI
configuration register and occupies 4 Mbytes of Avenger address space (see section 4 for an Avenger
address map). Regardless of actual frame buffer resolution, al linear frame buffer accesses assume a
2048-pixel logical scan line width. The number of bytes per scan line depends on the format of linear
frame buffer access format selected in the IfbM ode register. Note for al accesses to the linear frame
buffer, the status of bit(16) of fbzM ode is used to determinethe Y origin of data accesses. When
bit(16)=0, offset Ox0 into the linear frame buffer address space is assumed to point to the upper-left corner
of the screen. When bit(16)=1, offset 0x0 into the linear frame buffer address space is assumed to point to
the bottom-left corner of the screen. Regardless of the status of fbzM ode bit(16), linear frame buffer
addresses increment as accesses are performed going from left-to-right across the screen. Also note that
clipping is not automatically performed on linear frame buffer writes if scissor clipping is not explicitly
enabled (fbzM ode bit(0)=1). Linear frame buffer writes to areas outside of the monitor resolution when
clipping is disabled result in undefined behavior.

8.75.1 Linear framebuffer Writes

The following table shows the supported linear frame buffer write formats as specified in bits(3:0) of
[fbM ode:

Value Linear Frame Buffer Access Format

16-bit formats

0 16-bit RGB (5-6-5)

1 16-bit RGB (x-5-5-5)

2 16-bit ARGB (1-5-5-5)

3 Reserved
32-bit formats

4 24-hit RGB (8-8-8)

5 32-hit ARGB (8-8-8-8)

7:6 Reserved

11:8 Reserved

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97

Proprietary 141 Updated 12/18/99




Avenger High Performance Graphics Engine

i

12 16-bit depth, 16-bit RGB (5-6-5)

13 16-bit depth, 16-bit RGB (x-5-5-5)
14 16-bit depth, 16-bit ARGB (1-5-5-5)
15 16-bit depth, 16-bit depth

When writing to the linear frame buffer with a 16-bit access format (formats 0-3 and format 15 in

IfbM ode), each pixel written is 16-bits, so there are 2048 bytes per logical scan line. Remember when
utilizing 16-bit access formats, two 16-bit values can be packed in a single 32-bit linear frame buffer write
-- the location of each 16-bit component in screen space is defined by bit(11) of IfbMode. When using
16-bit linear frame buffer write formats 0-3, the depth components associated with each pixel istaken
from the zaColor register. When using 16-bit format 3, the alpha component associated with each pixel
istaken from the 16-bit data transfered, but when using 16-bit formats 0-2 the alpha component
associated with each pixel is taken from the zaColor register. The format of the individual color channels
within a 16-bit pixel is defined by the RGB channel format field in IfbM ode bits(12:9). Seethe lfbMode
description in section 5 for a detailed description of the rgb channel format field.

When writing to the linear frame buffer with 32-bit access formats 4 or 5, each pixel is 32-bits, so there
are 4096 bytes per logical scan line. Note that when utilizing 32-bit access formats, only a single pixel
may be written per 32-bit linear frame buffer write. Also note that linear frame buffer writes using format
4 (24-bit RGB (8-8-8)), while 24-hit pixels, must be aligned to a 32-bit (doubleword) boundary -- packed
24-bit linear frame buffer writes are not supported by Avenger. When using 32-bit linear frame buffer
write formats 4-5, the depth components associated with each pixel is taken from the zaColor register.
When using format 4, the alpha component associated with each pixel is taken from the zaColor register,
but when using format 5 the alpha component associated with each pixel is taken from the 32-bit data
transfered. The format of the individual color channels within a 24/32-bit pixel is defined by the rgb
channel format field in IfbM ode bits(12:9).

When writing to the linear frame buffer with a 32-bit access formats 12-14, each pixel is 32-bits, so there
are 4096 bytes per logical scan line. Note that when utilizing 32-bit access formats, only a single pixel
may be written per 32-bit linear frame buffer write. If depth or alphainformation is not transfered with
the pixel, then the depth/alpha information is taken from the zaColor register. The format of the
individual color channels within a 24/32-bit pixel is defined by the rgb channel format field in IfbM ode
bits(12:9). The location of each 16-bit component of formats 12-15 in screen space is defined by bit(11) of
IfboM ode. See the IfbM ode description in section 5 for more information about linear frame buffer writes.

8.75.2 Linear frame buffer Reads

It isimportant to note that reads from the linear frame buffer bypass the PCI host FIFO (as well as the
memory FIFO if enabled) but are blocking. If the host FIFO has numerous commands queued, then the
read can potentially take a very long time before data is returned, as data is not read from the frame buffer
until the PCI host FIFO is empty and the graphics pixel pipeline has been flushed. One way to minimize
linear frame buffer read latency is to guarantee that the Avenger graphics engineisidle and the host
FIFOs are empty (in the status register) before attempting to read from the linear frame buffer.

8.76 Programming Caveats

The following isalist of programming guidelines which are detailed el sewhere but may have been
overlooked or misunderstood:

Copyright O 1996-1997 3Dfx Interactive, Inc. Revision 0.97
Proprietary 142 Updated 12/18/99




d f Avenger High Performance Graphics Engine
A

8.76.1 Memory Accesses

All Memory accesses to Avenger registers must be 32-bit word accesses only. Linear frame buffer
accesses may be 32-bit or 16-bit accesses, depending upon the linear frame buffer access format specified
in IfbM ode. Byte(8-hit) accesses are only allowed to Avenger linear frame buffer.

8.76.2 Determining Avenger Idle Condition

After certain Avenger operations, and specifically after linear frame buffer acceses, there exi